Решение варианта 1

1. (10 баллов) Двигатель машины-амфибии работает в расчетном режиме при определенной номинальной мощности. Когда машина едет по воде, то при скорости 20 км/ч развивает силу тяги 10 кH, при этом ее КПД равен 30%. Если же машина движется по дороге, то ее КПД будет равен 55%. С какой постоянной скоростью может ехать машина-амфибия по дороге, если известно, что развиваемая сила тяги 15 кH?

Возможное решение:

$$\eta_1 = \frac{V_1 F_1}{W}$$

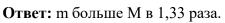
$$\eta_2 = \frac{V_2 F_2}{W}$$
 $V_2 = \frac{V_1 F_1 \eta_2}{F_2 \eta_1} = 24,4$ км/ч

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно	0
Верно записаны КПД двигателя при движении по дороге и по воде	6
Верно выражена скорость при движении по дороге	2
Верно получен численный ответ	2
Всего баллов	10

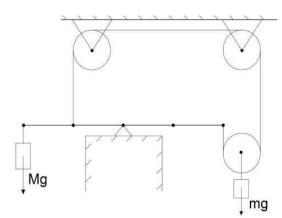
2. (15 баллов) Определите, масса какого груза больше и во сколько раз, если система находится в состоянии равновесия. Блоки невесомы, нить невесомая и нерастяжимая.

Рычаг невесомый и шарнирно закреплен в центре.

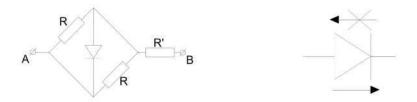
Возможное решение:


Расставим силы и запишем уравнение равновесия рычага:

$$T \cdot x + T \cdot 2x = Mg \cdot 2x$$


где: $T = \frac{mg}{2}$ (из условия равновесия подвижного блока)

Тогда:


$$\frac{3mg}{2} = 2Mg$$
$$m = \frac{4M}{3}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно записано условие равновесия подвижного блока	4
Верно записано условие равновесия рычага	8
Верно найден числовой ответ	3
Всего баллов	15

3. (15 баллов) Приведенную на рисунке схему подключают к источнику питания с помощью клемм A и B. В схеме присутствует диод. Это элемент цепи, который пропускает ток только в одну сторону (см. рисунок). При этом, если он пропускает ток, то его сопротивление r = 0.5 Ом. Определите, какие мощности выделяются на резисторе R, в случаях, когда к плюсу источника питания подключена клемма A, а к минусу B и наоборот. Напряжение источника питания U-10 B, сопротивления резисторов R = 5 Ом, R' = 10 Ом. Внутренним сопротивлением источника питания пренебречь.

Возможное решение:

Схема состоит из параллельно соединенных резисторов R и диода, и последовательно подключенного к ним резистора R.

Если подключить "+" к A, то диод ток не пропускает. Тогда ток течет только через резисторы. Тогда:

$$I_I = U/(R/2 + R')$$

 $P_I(R') = I^2 {}_I R' = \frac{U^2}{(\frac{R}{2} + R')^2} \cdot R' = 6,4 \text{ BT}$

Если подключить "-" к А, то диод будет пропускать ток. Тогда ток течет через резисторы и диод, который выступает в роли третьего резистора.

Тогда:

$$R_{
m oбiц} = R' + (rac{1}{R} + rac{1}{R} + rac{1}{r})^{-1} = rac{125}{12}$$
 Ом
$$I_2 = rac{U}{R_{
m ofit}} = 0,96 \text{ A}$$

$$P_2(R') = I^2 {}_2 R' = rac{U^2}{R_{
m ofit}^2} \cdot R' = 9,2 \approx 9 \mathrm{BT}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно описана зависимость работы диода от подключения источника питания	5
Верно посчитано общее сопротивление в случае прямого подключения диода	3
Верно посчитано общее сопротивление в случае, когда диод не пропускает ток	3
Верно рассчитана мощность в случае прямого подключения диода	2
Верно рассчитана мощность в случае, когда диод не пропускает ток	2
Всего баллов	15

4. (20 баллов) В бассейне с водой с вертикальными стенками, площадь дна которого 10 квадратных метров, в некоторый момент времени образовалась небольшая дырка, начальная скорость вытекания воды из которой равнялась 4,5 м/с. Определите начальную скорость вытекания воды из этой дырки, если бы в момент её образования в бассейне на поверхности воды на матрасе весом 10 Н плавал мальчик массой 50 кг. При погружении мальчика в бассейн без дырки вода из него не выливается. Плотность воды $\rho = 1$ г/см³.

Возможное решение:

Определим скорость вытекания жидкости без мальчика и с ним. Во втором случае изменяется только высота столба жидкости. Определяем из закона сохранения энергии.

$$V_1=\sqrt{2gh},$$
 где h - высота столба жидкости над дыркой.
$$V_2=\sqrt{2g(h+\Delta h)},$$
 где Δh - изменение уровня жидкости.
$$V^2{}_2=V^2{}_1+2g\Delta h$$

Найдем Δh :

 $(m + M)g = \rho_B g V_{\text{погр}}$ (условие плавания мальчика на матрасе)

Так как $V_{\text{погр}} + V_{\text{воды}} = S(h + \Delta h)$ то:

$$V_{\text{погр}} = \frac{(m+M)}{\rho_{\text{B}}} = S \Delta h$$
$$\Delta h = \frac{(m+M)}{S \cdot \rho_{\text{B}}}$$
$$V_2 = \sqrt{V_1^2 + 2g(\frac{m+M}{S \cdot \rho_{\text{B}}})} \approx 4,51 \text{ m/c}^2$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно записан закон сохранения энергии	6
Верно записано условие плавания мальчика на матрасе	4
Верно найдена Δh	8
Верно получен численный ответ	2
Всего баллов	20

5. (20 баллов) В открытом стальном литровом калориметре массой 0.5 кг, полностью заполненном водой, плавает кусок льда. Сколько льда было в калориметре, если при нагревании его на конфорке мощностью 450 Вт в течение 15 минут калориметр с содержимым нагрелся до 20°С? Тепловые потери составили 60%. Удельная теплота плавления льда λ =330 кДж/кг. Удельная теплоемкость воды $c_{\rm B}=4200~{\rm kДж/kr\cdot K}$. Удельная теплоемкость стали $c_{\rm c}=460~{\rm kДж/kr\cdot K}$. Плотность льда $\rho_{\rm A}=900~{\rm kr/m}^3$. Плотность воды $\rho_{\rm B}=1~{\rm r/cm}^3$.

Возможное решение:

Из условия плавания тел и закона Архимеда знаем, что после таяния льда объем воды будет равен объему калориметра => $m_{\rm g} = {\rm p}_{\rm B} V_{\rm B} = 1~{\rm K}\Gamma$

Распишем уравнение теплового баланса.

$$\eta \cdot Q$$
 конфорки = Q полученное, где $\eta = \frac{100-60}{100\%} = 0,4$
$$\eta P \tau = c_{\rm B} m_{\rm B} \Delta t + \lambda m_{\rm H} + c_c m_c \Delta t$$

$$m_{\rm H} = \frac{\eta P \tau - \Delta t (c_{\rm B} m_{\rm B} + c_c m_c)}{\lambda} \approx 0,222 {\rm K}\Gamma.$$

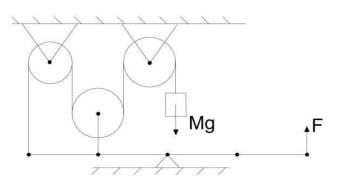
Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно найдена суммарная масса воды и льда	8
Верно найден КПД конфорки	2
Верно записано уравнение теплового баланса	7
Получен правильный числовой ответ	3
Всего баллов	20

Решение варианта 2

1. (10 баллов) Двигатель машины-амфибии работает в расчетном режиме при определенной номинальной мощности. Когда машина едет по воде, то при скорости 18 км/ч развивает силу тяги 10 кН. При этом ее КПД равен 35%. Если же машина движется по дороге, то ее КПД будет равен 50%. Какую силу тяги развивает машина-амфибия на дороге, когда она едет с постоянной скоростью 80 км/ч?

Возможное решение:

$$\eta_{1} = \frac{V_{1}F_{1}}{W}$$


$$\eta_{2} = \frac{V_{2}F_{2}}{W}$$

$$F_{2} = \frac{V_{1}F_{1}\eta_{2}}{V_{2}\eta_{1}} = 3,2kH$$

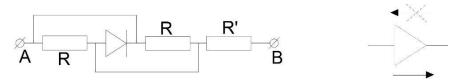
Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно	0
Верно записаны КПД двигателя при движении по дороге и по воде	6
Верно выражена сила тяги при движении по дороге	2
Верно получен численный ответ	2
Всего баллов	10

2. (15 баллов) Система, изображенная на рисунке, находится в равновесии. Определите величину силы F, если масса груза M=2 кг.

Блоки невесомы, нить невесома и нерастяжима. Рычаг невесомый и шарнирно закреплен в центре.

Возможное решение:

Расставим силы и запишем условие равновесия рычага:


$$T \cdot 2x + T_1 \cdot x = F \cdot 2x$$

где: T = Mg из условия равновесия груза, а $T_1 = 2T$ из условия равновесия подвижного блока. Тогда:

$$2F = 4Mg$$
$$F = 40 \text{ H}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно записано условие равновесия подвижного блока	4
Верно записано условие равновесия рычага	8
Верно найден числовой ответ	3
Всего баллов	15

3. (15 баллов) Приведенную на рисунке схему подключают к источнику питания с помощью клемм A и B. В схеме присутствует диод. Это элемент цепи, который пропускает ток только в одну сторону (см. рисунок). При этом, если он пропускает ток, то его сопротивление r = 0.5 Ом. Определите, какие мощности выделяются на резисторе R' в случаях, когда к плюсу источника питания подключена клемма A, а к минусу B и наоборот. Напряжение источника питания U = 10 B, сопротивления резисторов R = 2 Ом, R' = 5 Ом. Внутренним сопротивлением источника питания пренебречь.

Возможное решение:

Схема состоит из параллельно соединенных резисторов R и диода и последовательно подключенного к ним резистора R.

Если подключить "+" к A, то диод ток не пропускает. Тогда ток течет только через резисторы. Тогда:

$$I_I = U/(R/2 + R') = 10/6 A$$

 $P_I(R') = I_I^2 R' = \frac{U^2}{(\frac{R}{2} + R')^2} \cdot R' = \frac{500}{36} \text{BT} \approx 14 \text{ BT}$

Если подключить "-" к А, то диод будет пропускать ток. Тогда ток течет через резисторы и диод, который выступает в роли третьего резистора.

Тогда:

$$R_{
m o 6 m} = R' + (rac{1}{R} + rac{1}{R} + rac{1}{r})^{-1} = rac{16}{3}$$
 Ом
$$I_2 = rac{U}{R_{
m o 6 m}} = 1,875 \ A$$

$$P_2(R') = I^2 {}_2 R' = rac{U^2}{R_{
m o 6 m}^2} \cdot R' = 17,85 \approx 18 \ {
m BT}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно описана зависимость работы диода от подключения источника питания	5
Верно посчитано общее сопротивление в случае прямого подключения диода	3
Верно посчитано общее сопротивление в случае, когда диод не пропускает ток	3
Верно рассчитана мощность в случае прямого подключения диода	2
Верно рассчитана мощность в случае, когда диод не пропускает ток	2
Всего баллов	15

4. (20 баллов) В бассейне с водой с вертикальными стенками в некоторый момент времени образовалась небольшая дырка, начальная скорость вытекания воды из которой равнялась 3,5 м/с. Определите площадь дна бассейна, если известно, что если бы в момент образования дырки в бассейне на поверхности воды на матрасе весом 15 Н плавал мальчик массой 50 кг, начальная скорость вытекания воды из этой дырки равнялась бы 3,52 м/с. При погружении мальчика в бассейн без дырки вода из него не выливается. Плотность воды $\rho_{\rm B} = 1~{\rm r/cm}^3$.

Возможное решение:

Определим скорость вытекания жидкости без мальчика и с ним. Во втором случае изменяется только высота столба жидкости. Определяем из закона сохранения энергии.

$$V_1 = \sqrt{2gh}$$
, где h - высота столба жидкости над дыркой.

$$V_2=\sqrt{2g(h+\Delta h)}$$
, где Δh - изменение уровня жидкости.
$$V^2{}_2=V^2{}_1+2g\Delta h$$

Найдем Δh :

 $(m + M)g = \rho_B g V_{\text{погр}}$ (условие плавания мальчика на матрасе)

Так как $V_{\text{погр}} + V_{\text{воды}} = S(h + \Delta h)$ то:

$$V_{\text{HOFP}} = \frac{(m+M)}{\rho_{\text{B}}} = S \Delta h$$

$$\Delta h = \frac{(m+M)}{S \cdot \rho_{\text{B}}}$$

Подставим Δh :

$$V^{2}_{2} = V^{2}_{1} + 2g \frac{(m+M)}{s \cdot \rho_{B}}$$
$$S = \frac{2g(m+M)}{(V_{2}^{2} - V_{1}^{2}) \cdot \rho_{B}} \approx 7,33 \text{ m}^{2}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно записан закон сохранения энергии	6
Верно записано условие плавания мальчика на матрасе	4
Верно найдена Δh	8
Верно получен численный ответ	2
Всего баллов	20

5. (20 баллов) В открытом алюминиевом литровом калориметре массой 0.3 кг, полностью заполненном водой, плавает кусок льда. Сколько воды изначально было в калориметре, если при нагревании его на конфорке мощностью 500 Вт в течение 20 минут калориметр с содержимым нагрелся до 25°C? Тепловые потери составили 65%. Удельная теплота плавления льда λ =330 кДж/кг. Удельная теплоемкость воды $c_B = \kappa Дж/кг \cdot K$. Удельная теплоемкость алюминия c_a = 890 кДж/кг·К. Плотность льда ρ_{π} = 900 кг/м³. Плотность воды ρ_{B} = 1 г/см³.

Возможное решение:

Из условия плавания тел и закона Архимеда знаем, что после таяния льда объем воды будет равен объему калориметра => $m_{\rm g} = {\rm p}_{\rm B} V_{\rm B} = 1~{\rm K}\Gamma$

Распишем уравнение теплового баланса.

$$\begin{split} \eta{\cdot}Q_{\text{конфорки}} &= Q_{\text{полученное}}, \ \text{ где } \eta{=}\frac{(100-65)}{100\%} {=} \ 0,35 \\ \eta{\cdot}P{\cdot}\tau &= c_{\text{B}}m_{\text{B}}\Delta t + \lambda m_{\pi} + c_{\text{c}}m_{\text{c}}\Delta t \end{split}$$

$$\begin{split} m_{\text{л}} &= \frac{\eta P \tau - \Delta t (c_{\text{B}} m_{\text{B}} + c_{\text{C}} m_{\text{C}})}{\lambda} \approx &0,3 \text{ кг.} \\ m_{\text{воды начальная}} &= m_{\text{B}} - m_{\text{л}} = 0,7 \text{ кг.} \end{split}$$

Выполнение	Балл
Участник не приступал к заданию или выполнил его с самого начала неверно.	0
Верно найдена суммарная масса воды и льда	8
Верно найден КПД конфорки	2
Верно записано уравнение теплового баланса	7
Получен правильный числовой ответ	3
Всего баллов	20