Первый (заочный) онлайн-этап академического соревнования

Олимпиады школьников «Шаг в будущее» по общеобразовательному предмету «Математика», осень 2018 г.

9 класс

№1: Найдите все такие натуральные числа, корень пятой степени из которых равен количеству сотен тысяч в этих числах.

Решение. Пусть х-искомое число,
$$\sqrt[5]{x} = z, \sqrt[5]{x} = \frac{x}{100000} - a, a \in [0;1)$$

$$z = \frac{z^5}{10^5} - a$$
, $z^5 = 10^5 \cdot z + a \cdot 10^5$, или $z^4 = 10^5 + \frac{a \cdot 10^5}{z}$. Из этого равенства следуют две оценки:

первая: $z^4 \ge 10^5.20^4 = 160000 > 10^5, 19^4 = 130621 > 10^5, 18^4 = 104976 > 10^5, 17^4 = 83521 < 10^5$ $\Rightarrow z \ge 18$

$$z^4 \prec 10^5 + \frac{1 \cdot 10^5}{18} = 10^5 \cdot \frac{19}{18} = 105555,55556$$

 $18^4 \prec \frac{19}{18} \cdot 10^5$. Только z=18 удовлетворяет 1) и 2), значит $x = z^5 = 18^5 = 1889568$

Ответ: 1889568.

№2: При каких значениях параметра a уравнение

 $(a-1)(x^2-4x+4)+2a\sqrt{x^2-4x+4}+3a-2=0$ имеет хотя бы одно решение? В ответе укажите длину получившегося промежутка, взятую со знаком «+», если ответ – отрезок или интервал и взятую со знаком «-», если ответ – полуинтервал (один конец промежутка входит в ответ, другой – нет).

Решение. Обозначим $t = \sqrt{x^2 - 4x + 4} = |x - 2| \ge 0$.

Уравнение примет вид: $(a-1)t^2 + 2at + 3a - 2 = 0$. Проще сначала решить обратную задачу – определить, при каких значениях a решений нет, а затем вычесть из множества действительных чисел эти промежутки. Уравнение не имеет корней, если D < 0 или все корни отрицательны. Отдельно необходимо рассмотреть линейный случай a = 1.

При a=1 уравнение принимает вид 2t+1=0; t=-0.5<0 . Значит, корней этому значению параметра не соответствует.

 $\frac{D}{4} = a^2 - (a-1)(3a-2) < 0$ при $a \in (-\infty; 0,5) \cup (2; +\infty)$. Оба корня отрицательны, если их сумма отрицательна, а произведение положительно. На основании теоремы Виета два или один

отрицательный корень задаются системой условий $\begin{cases} D \geq 0 \\ \frac{-2a}{a-1} < 0 \\ \frac{3a-2}{a-1} > 0 \end{cases}$

$$\begin{cases} a \in [0,5;2] \\ a \in (-\infty;0) \cup (1;+\infty) ; a \in (1;2]. \\ a \in \left(-\infty;\frac{2}{3}\right) \cup (1;+\infty) \end{cases}$$

Объединяя все значения параметра, при которых нет решений, получим

$$a \in (-\infty; 0,5) \cup [1; +\infty)$$

Значит, хотя бы одно решение существует при $a \in [0,5;1)$.

Ответ: - 0,5.

№3: Найдите квадрат расстояния между максимально удаленными друг от друга точками фигуры, заданной уравнением на плоскости хОу:

$$|x-2y|+|(x+2)(x-3)|+(x+2)(x-3)=0$$

Решение:

 $|x-2y| \ge 0 \forall x, \forall y; |(x+2)(x-3)| \ge 0 \forall x \Longrightarrow (x+2)(x-3) \le 0 \Longrightarrow |(x+2)(x-3)| = -(x+2)(x-3) \Longrightarrow$ |x-2y| = 0; при одновременном выполнении полученных условий получается отрезок AB, где A(-2;-1), B(1;2).Длина отрезка AB= $\frac{5\sqrt{5}}{2}$.

Ответ: 31,25.

№4: В озеро Омега впадают две реки: Альфа и Бета. Пароход отплывает от пристани А на реке Альфа, плывет вниз по течению до озера, затем через озеро и по реке Бета вверх до пристани В. Затем пароход возвращается обратно. На весь путь от А до В пароход затратил 1 час 48 минут, а на обратный путь 1 час 44 минуты. Скорость парохода при движении по озеру (без течения) 20 км/ч, скорость течения реки Альфа 5 км/ч, реки Бета — 4 км/ч, а длина пути от пункта А до пункта В по воде равна 34 км. На каком расстоянии (в километрах) от озера находится пристань В?

Решение. Обозначим x, y, z – расстояния, которые пароход прошёл по реке Альфа, озеру и

реке Бета соответственно. Тогда по условию задачи составим систему $\begin{cases} \frac{x}{25} + \frac{y}{20} + \frac{z}{16} = \frac{9}{5} \\ \frac{x}{15} + \frac{y}{20} + \frac{z}{24} = \frac{26}{15} \\ x + y + z = 34 \end{cases}$;

$$\begin{cases} y = 34 - x - z \\ \frac{4}{5}x + 34 - x - z + \frac{5}{4}z = 36 \\ \frac{4}{3}x + 34 - x - z + \frac{5}{6}z = \frac{104}{3} \end{cases}$$

Систему можно решать по-разному. Например, умножим первые два уравнения на 20 и

применим метод последовательного исключения неизвестных.
$$\begin{cases} y = 34 - x - z \\ 2x - z = 4 \\ 5z - 4x = 40 \end{cases}; \begin{cases} x = 10 \\ y = 8 \\ z = 16 \end{cases}$$

Ответ: 16.

№5: Ваня играет с папой в игру «Забери последний камень». Сначала в куче 16 камней. Игроки по очереди берут 1, 2, 3 или 4 камня. Выигрывает тот, кто заберет последний камень. Ваня играет впервые и потому каждый раз берет случайное число камней, при этом он не нарушает правила игры. Папа играет по следующему правилу: на каждом ходу он берет столько камней, чтобы вероятность выигрыша Вани была наименьшей. Игру всегда начинает Ваня. Определить число $16 \cdot p$, где p - вероятность выигрыша Вани.

Решение: Заметим, что игрок, делающий первый ход, всегда имеет преимущество и выигрывает при правильной стратегии. Действительно, на первом шаге нужно взять один камень из кучи, а на каждом последующем шаге брать такое количество камней, чтобы число оставшихся камней делилось на 5. Поскольку согласно правилам игры, на каждом шаге разрешено брать 1, 2, 3 или 4 камня, такая стратегия всегда осуществима.

В то же время, если на каком-то из шагов игрок, делающий первый ход, отступит от этой стратегии, то его соперник имеет возможность выиграть игру, воспользовавшись той же стратегией. Заметим также, что если в игре побеждает игрок, делающий первый ход, то он обязательно делает за игру 4 хода.

Таким образом, у Вани на каждом ходу есть только одна возможность выиграть: если он возьмет 1 камень на первом ходу, оставит папе ровно 10 камней после второго хода и ровно 5 камней после третьего хода. Вероятность этого $\left(\frac{1}{4}\right)^3$.

После этого папа, чтобы сделать наименьшей вероятность выигрыша Вани, должен взять 1 камень. Тогда Ваня выиграет, только если сразу возьмет 4 камня из четырех оставшихся. Вероятность такого хода $\frac{1}{4}$.

Таким образом, вероятность выигрыша Вани равна $p = \left(\frac{1}{4}\right)^3 \cdot \frac{1}{4} = \frac{1}{256}$, ответом является число $16 \cdot p = \frac{1}{16} = 0,0625 \ .$

Ответ: 0,0625.

№6: Дан равнобедренный остроугольный треугольник ABC (AB=BC), в котором AC=2. На боковой стороне BC отмечена точка M так, что $\angle MAC=40^\circ$. Точка N лежит на продолжении прямой BC за точку C (C лежит между M и N) так, что AN=MN и $\angle BAM=\angle NAC$.

Найти расстояние от точки $\,C\,$ до прямой $\,AN\,$.

Решение.

Ответ: 1.

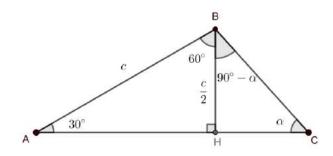
Рассмотрим $CK \perp AN$, CK - расстояние от точки C до прямой AN . По условию: $\angle BAM = \angle NAC = \alpha$, $\angle MAC = 40^\circ$. Так как AN = MN , то $\angle AMN = \angle MAN = \alpha + 40^\circ$, далее, из AB = BC , получаем $\angle MCA = \alpha + 40^\circ$. В треугольнике MAC : $2 \cdot (\alpha + 40^\circ) + 40^\circ = 180^\circ$, следовательно, $\alpha = 30^\circ$. В треугольнике ACK : $\angle K = 90^\circ$, $\angle A = \alpha = 30^\circ$, AC = 2, следовательно, $CK = \frac{1}{2}AC = 1$

 $\alpha + 40$

№7: Один из углов треугольника равен 48°. Высота, проведённая к стороне, прилежащей к этому углу равна половине стороны противолежащей к этому углу. Найдите разность между наибольшим и наименьшим углами треугольника.

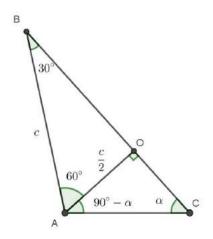
Решение.

Пусть известный угол треугольника ABC равен $\angle C = \alpha$, тогда сторона противолежащая этому углу равна c, а высота проведённая к одной из прилежащих сторон равна $\frac{c}{2}$. Рассмотрим два случая, которые возможны в этой задаче.



1) AC - прилежащая сторона к известному углу, BH - высота. Из условия: $\angle BAH = 30^\circ$, $\angle ABH = 60^\circ$. В треугольнике BHC : $\angle C = \alpha = 48^\circ$,

$$\angle B = 90^{\circ} - \alpha = 90^{\circ} - 48^{0} = 42^{0}$$
. В треугольнике ABC : $\angle A = 30^{\circ}$ $\angle B = 60^{\circ} + 90^{\circ} - 48^{0} = 102^{0}$, $\angle C = 48^{0}$ - известен.



2) BC - прилежащая сторона к известному углу, AO - высота. Заметим, что этот случай, с точностью до обозначений, повторяет первый случай. Из условия: $\angle ABO = 30^\circ$, $\angle BAO = 60^\circ$. В треугольнике AOC : $\angle C = 48^\circ$, $\angle A = 90^\circ - 48^\circ = 42^\circ$. В треугольнике ABC : $\angle B = 30^\circ$, $\angle A = 42^\circ$, $\angle C = 48^\circ$ - известен.

Таким образом, углы треугольника ABC равны 30° , 102° , 48° .

Ответ. 72.

№8: Решите уравнение. В ответе укажите сумму его корней.

$$(x^2-4)(x+3)-10(3x-4)\sqrt{x+3}+3x(x+3)=10x^2\sqrt{x+3}-21(x^2+3x)+84.$$

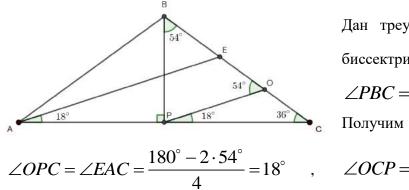
Решение: О.Д.3. уравнения: $x \ge -3$. После группировки слагаемых приведём уравнение к виду $(x+3)(x^2+3x-4)=10\sqrt{x+3}$ $(x^2+3x-4)-21(x^2+3x-4)$; $(x^2+3x-4)(x+3-10\sqrt{x+3}+21)=0$

 $(x-1)(x+4)\big(\sqrt{x+3}-7\big)\big(\sqrt{x+3}-3\big)=0\quad ;\quad x_1=1\ ,\qquad x_2=-4\quad \text{- не подходит по}$ О.Д.З. , $x_3=46$, $x_4=6$. Суммируем корни: 46+6+1=53 .

Ответ: 53.

№9: Угол, образованный высотой BP равнобедренного треугольника ABC (AB = BC) и боковой стороной, равен 54° . Биссектрисы, проведённые к боковым сторонам равны 4. Найдите длину наименьшей биссектрисы.

Решение.



Дан треугольник ABC (AB=BC), AE - биссектриса, BP - высота, AE=4 , $\angle PBC=54^\circ$. Проведём PO параллельно AE . Получим треугольник POC , в котором , $\angle OCP=90^\circ-54^\circ=36^\circ$. Следовательно,

 $\angle POB = 54^{\circ}$, треугольник POB равнобедренный и $BP = PO = \frac{1}{2} \cdot AE = 2$. Таким образом, длина наименьшей биссектрисы BP равна 2.

Ответ: 2.