Московский государственный университет имени М.В. Ломоносова Олимпиада школьников «Ломоносов»

Профиль «Инженерные науки». 8 – 9 классы.

Задача 1. В комнате на столе стоит вертикальный цилиндр с теплопроводящими стенками. Он закрыт тонким невесомым горизонтальным поршнем, который может скользить без трения.

В цилиндре при комнатной температуре находится газовая смесь молекулярного кислорода (O_2) с озоном (O_3) , причем озон составляет n=35% от общего количества вещества в сосуде. Расстояние от дна цилиндра до поршня равно $H_0=20$ см.

На каком расстоянии от дна цилиндра окажется поршень после того, как весь озон за достаточно большое время самопроизвольно превратится в молекулярный кислород? Температуру в комнате считайте постоянной.

Задача 2. Инженер Александр решил построить на даче одноэтажный легкий дом на высоком столбчатом фундаменте, с квадратным основанием и плоской крышей размерами $a \times a = 6 \times 6 \text{ m}^2$ и высотой h = 3 м. В качестве утеплителя стен, потолка и пола был выбран пенопласт толщиной d = 15 см, коэффициент теплопроводности пенопласта $\lambda = 0.040 \text{ Bt/(m} \cdot \text{K)}$. В доме планируется установить три одинаковых окна с коэффициентом теплоотдачи $k_{\text{окн}} = 1.50 \text{ Bt/(m}^2 \cdot \text{K)}$ и размерами $h \times l = 1.2 \times 1.5 \text{ m}^2$ и входную дверь с коэффициентом теплоотдачи $k_{\text{дв}} = 1.00 \text{ Bt/(m}^2 \cdot \text{K)}$ и размерами $h \times l = 1.0 \times 2.0 \text{ m}^2$.

Для комфортного пребывания температура в доме должна быть $t_{\rm k}=18^{\circ}{\rm C}$. Помогите Александру рассчитать мощность отопительной системы, необходимой для комфортного пребывания в этом доме зимой, если на улице ожидается температура $t_{\rm v}=-22^{\circ}{\rm C}$.

Sказание. Мощность тепловых потерь через двери или окна можно найти, используя закон Ньютона – Рихмана, $P=kS(t_{\rm k}-t_{\rm y})$, а через толщу однородного вещества — используя закон Фурье, $P=\frac{S\lambda}{d}(t_{\rm k}-t_{\rm y})$.

Комментарий: можно заметить, что в модели не учитываются тепловые потери связанные вентиляцией воздуха, неидеальностью утепления конструкции. Рассмотренная простейшая модель предполагает только удержание температуры в доме на заданном уровне.

Задача 3. Впервые сплав X, состоящий из простых веществ A и B, был получен в 1960-е годы в ходе подготовки космической программы. Этот сплав обладает двумя уникальными свойствами — памятью формы и суперэластичностью, что делает данный материал востребованным в различных сферах жизни.

- (a) установите, что за вещества входят в состав сплава ${\bf X}$, если известно что:
- ullet хлорид **A** использовался в ходе первой мировой войны для создания дымовой завесы; оксид **A** добавляют в продукты питания в качестве пищевой добавки E171 белый краситель-отбеливатель; из того же **A** сделан памятник Юрию Гагарину, установленный в Москве на Ленинском проспекте.
- вещество \mathbf{F} образует тетракарбонил, в котором его массовая доля составляет 34,38%. (б) установите состав сплава \mathbf{X} и его плотность, если его элементарная ячейка имеет форму куба и размеры, представленные на рисунке.

Критерии:

Полный балл ставится, если участник развернуто ответил на оба вопроса задачи.

Три четверти баллов за задачу ставится, если участник ответил на оба вопроса задачи, но ошибся в вычислениях (пример — ошибка в подстановке данных в итоговую формулу для плотности).

Половина баллов ставится, если участник ответил только на один вопрос и задачи (и не допустил вычислительных ошибок).

Задача 4. Вода, поступающая в городской водопровод, требует дополнительного обеззараживания перед подачей потребителям. Наиболее распространённым способом дезинфекции воды является её хлорирование. Однако при хлорировании некоторые растворённые в воде органические вещества образуют хлорорганические соединения. Основными загрязнителями воды при этом становятся тригалогенметаны (ТГМ), присутствие в воде которых имеет подтвержденную связь с проблемами со здоровьем у горожан.

Мосводоканал устанавливает максимальную концентрацию $T\Gamma M$ в водопроводе в пределах 1,2 мг/л. Предельно допустимая концентрация $T\Gamma M$ в водопроводной воде составляет 5 миллионных долей (по массе). Известно, что при кипячении воды $T\Gamma M$ остаются в кипячёной воде.

Иван Иванович готовит чай следующим образом. Вначале он заполняет пустой чайник одним литром водопроводной воды. Затем ставит его на плиту и забывает о нем. Когда чайник выкипает наполовину, он заваривает себе чай и оставляет половину воды в чайнике, к которой доливает воды из-под крана и снова кипятит литр воды. Через сколько таких кипячений Ивану Ивановичу будет небезопасно заваривать чай?

Справочный материал для всех классов

		I		ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ												VIII					
1	1	1 1,0079 Водород	Н	II		ЭЛЕМЕ		EHTOB Д.		И. МЕНДЕ. v		ЛЕЕВА vi		VII						2 4,0026 Гелий	He
2	2	3 6,94 Литий	Li	4 9,01 Бериллий	Ве	5 10,81 Бор	В	6 12,011 Углерод	С	7 14,00 Азот	N	8 15,999 Кислород	О	9 18,998 Фтор	F					10 20,179 Неон	Ne
3	3	11 22,99 Натрий	Na	12 24,3 Магний	Mg	13 26,98 Алюминий		14 28,09 Кремний	Si	15 30,97 Фосфор	P	16 32,06 Cepa	S	17 35,45 Хлор	Cl					18 39,95 Аргон	Ar
4	4	19 39,098 Калий	K	20 40,08 Кальций	Ca	21 44,96 Скандий	Sc	22 47,90 Титан	Ti	23 50,94 Ванадий	V	24 51,996 Хром	Cr	25 54,94 Маргане	Mn	26 55,85 Железо	Fe	27 58,93 Кобальт	Co	28 58,70 Никель	Ni
	5	29 63,55 Медь	Cu	30 65,38 Цинк	Zn	31 69,72 Галлий	Ga	32 72,59 Германий	Ge	33 74,922 Мышьяк	As	34 78,96 Селен	Se	35 79,904 Бром	Br					36 83,80 Криптон	Kr
5	6	37 85,47 Рубидий	Rb	38 87,62 Стронций	Sr	39 88,906 Иттрий	Y	40 91,22 Цирконий	Zr	41 92,906 Ниобий	Nb	42 95,94 Молибден	Mo	43 98,906 Технеций	Tc	44 101,07 Рутений	Ru	45 102,905 Родий	Rh	46 106,4 Палладий	Pd
J	7	47 107,868 Серебро	Ag	48 112,41 Кадмий	Cd	49 114,82 Индий	In	50 118,69 Олово	Sn	51 121,75 Сурьма	Sb	52 127,60 Теллур	Те	53 126,904 Йод	Ι					54 131,30 Ксенон	Xe
6	8	55 132,905 Цезий	Cs	56 137,33 Барий	Ba	57 *) 138,905 Лантан	La	72 178,49 Гафний	Hf	73 180,94 Тантал	Ta	74 183,85 Вольфрам	W	75 186,21 Рений	Re	76 190,2 Осмий	Os	77 192,22 Иридий	Ir	78 195,09 Платина	Pt
U	9	79 196,966 Золото	Au	80 200,59 Ртуть	Hg	81 204,37 Таллий	Tl	82 207,2 Свинец	Pb	83 208,98 Висмут	Bi	84 209,0 Полоний	Po	85 210,0 Астат	At					86 222,0 Радон	Rn
7	10	87 223,0 Франций	Fr	88 226,025 Радий	Ra	89 **) 227,0 Актиний	Ac	104 261,1 Курчатови	Ku	105 259,9 Нильсбор	Ns	106 263,1 Сиборгий	Sg	107 262,1 Борий	Bh	108 [265,1] Гассий	Hs	109 [268] Мейтнер	Мt	•	•
									*)	ЛАНТА	ноид	цы 58—7	71								
58 140, Цер		Ce 140,9 Pr Празеодим		60 144,2 Nd 61 146,9 Р: Промети		9 Pm 15					64 157,3 Gd Гадолиний 65 158,9 Терб		ть ⁶⁶ 162,5 І Диспроз) y _{164,9} Ho		167,3 Er 168,9 Tm 17		70 173,0 Иттерби	73,0 Yb 175,0 Lu	
				•				•	**)			Ы 90—10									
90 232, Top		Гh 91 231,0 Прота	Ра	92 238,0 Уран	U 237, Hen	0 N p 24 туний П	1 14,1 Г лутони	Pu 95 243,12 й Амери	Am	⁹⁶ 247,1 С1 Кюрий	97 247, Бері	1 Bk 2 клий K	51,1	Cf ⁹⁹ 252,0 эний Эйнг	Es	100 257,1 F1 Фермий	n 258 Mei	1 Md іделевий	102 259,1 1 Нобелий	NO 260,1 Лоуро	Lr

РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Способность присоединять электроны (восстанавливаться) возрастает

Li $^+$ Rb $^+$ K $^+$ Cs $^+$ Ca $^{2+}$ Na $^+$ Mg $^{2+}$ Al $^{3+}$ Ti $^{2+}$ Mn $^{2+}$ Cr $^{2+}$ Zn $^{2+}$ Cr $^{3+}$ Fe $^{2+}$ Cd $^{2+}$ Co $^{2+}$ Ni $^{2+}$ Sn $^{2+}$ Pb $^{2+}$ Fe $^{3+}$ (H) $^+$ Bi $^{3+}$ Cu $^{2+}$ Cu $^+$ Hg $^{2+}$ Ag $^+$ Hg $^{2+}$ Pt $^{2+}$ Au $^{3+}$ Au $^+$ Способность отдавать электроны (окисляться) возрастает

Способность отдавать электроны (окисляться)