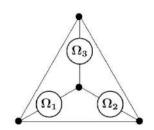
Министерство науки и высшего образования РФ Совет ректоров вузов Томской области

Открытая региональная межвузовская олимпиада

2021-2022


ФИЗИКА

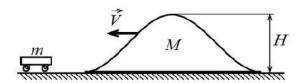
10 класс

1 Вариант. II этап.

Задача 1

Три одинаковых омметра соединили в цепь (см. рисунок). Один омметр показывает сопротивление $R=1\,$ кОм. Определите суммарные показания двух других омметров.

Комментарии к возможному решению Рассмотрим схему работы омметра. Источник с ЭДС E , сопротивлением r и идеальный амперметр соединены последовательно. Используя закон Ома для полной цепи, можно установить, что показания омметра (сопротивление внешнего резистора R): 1) $R = \frac{\varepsilon}{I} - r$, где I – ток, протекающий через омметр. 2) Возможны два варианта подключения омметров, согласно полярности их внутренних источников:	Баллы
E , сопротивлением г и идеальный амперметр соединены последовательно. Используя закон Ома для полной цепи, можно установить, что показания омметра (сопротивление внешнего резистора R): 1) $R = \frac{\varepsilon}{I} - r$, где I – ток, протекающий через омметр. 2) Возможны два варианта подключения омметров, согласно полярности их	5
•	
A) (Ω_3)	2
3) В схеме А) в силу симметрии токи, протекающие через омметры, должны быть	
одинаковыми: $I_1 = I_2 = I_3$, в тоже время, согласно первому правилу Кирхгофа: $I_1 +$	
$I_2 + I_3 = 0$, откуда $I_1 = I_2 = I_3 = 0$. Согласно 1) все омметры будут показывать 3	3
перегрузку/ бесконечное сопротивление/ разрыв цепи, что не согласуется с	
условием задачи. Вариант А) не подходит	
В схеме Б):	
$4) I_1 = I_2, I_1 + I_2 = I_3$	=
Внутренние ЭДС в омметрах Ω_1 и Ω_2 можно объединить в один эквивалентный	
(параллельное соединение) с ЭДС и внутренним сопротивлением:	1+1+2
$\int 5 \mathcal{E}_{12} = \left(\frac{\mathcal{E}}{r} + \frac{\mathcal{E}}{r}\right) r_{12} = 2\mathcal{E} \frac{1}{2} = \mathcal{E}, r_{12} = \frac{r}{2}$	1+1+4
При объединении с Ω_3 в общий эквивалентный источник (последовательное	


соединение):	
6) $\mathcal{E}_{123} = \mathcal{E}_{12} + \mathcal{E} = 2\mathcal{E}, r_{123} = r + r_{12} = \frac{3r}{2}$	
Ток короткого замыкания такого источника:	
7) $I_{K3} = I_3 = \frac{\varepsilon_{123}}{r_{123}} = \frac{4\varepsilon}{3r}$	
Альтернативно * 5)-7)	
Согласно второму правилу Кирхгофа при обходе контура с омметрами Ω_1 и Ω_3 :	
$5^*) \mathcal{E} + \mathcal{E} = I_1 r + I_3 r$	
С учётом 4):	2*+1*
$6^*) 2\mathcal{E} = \frac{1}{2}I_3r + I_3r = \frac{3}{2}I_3r$	+1*
Откуда:	
7^*) $I_3 = \frac{4\varepsilon}{3r}$	
При подстановке 7) в 1) получим показания омметра Ω_3 :	
8) $R_3 = \frac{\varepsilon}{I_3} - r = \frac{3}{4}r - r = -\frac{1}{4}r < 0$ (да, такое бывает – это показания прибора, а не	1
сопротивление резистора)	
9) Поскольку показания омметра Ω_{13} отрицательны, то показания омметров Ω_1 и	1
Ω_2 равны R	1
При подстановке I_1 в 1):	
$R_1 = \frac{\varepsilon}{I_1} - r = \frac{3}{2}r - r = \frac{1}{2}r$, откуда $r = 2$ кОм	1
Сумма показаний омметров Ω_2 и Ω_3 :	
$10) R_2 + R_3 = \frac{1}{2}r - \frac{1}{4}r = \frac{1}{4}r = 500 \text{ Om}$	2
Итого	20

Турист пересекает на байдарке бурную реку шириной $L=800\,$ м. Скорость течения $V=1.15\,$ м/с, скорость, с которой турист может двигаться относительно воды $U=1.15\,$ м/с. Как должен двигаться турист, чтобы его снесло на наименьшее расстояние? На какое расстояние его снесёт в этом случае?

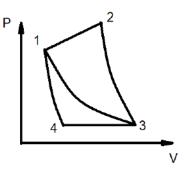
Комментарии к возможному решению	Баллы
O S S	2
1) Скорость движения туриста относительно берегов (абсолютная скорость) определяется векторной суммой скоростей воды, относительно берега (переносная скорость), и туриста относительно воды (относительная скорость).	5
Снос будет минимальным, если траектория движения туриста будет проходить по	4

касательной к окружности всех возможных значений абсолютной скорости. Угол	
между $v_{\text{отн}}$ и u прямой:	
2) $\sin \alpha = \frac{u}{v}$	
Связь перемещений вдоль течения S и поперёк реки L :	
3) $tg\alpha = \frac{L}{S}$, где S – снос туриста вдоль течения, откуда $S = L \ ctg\alpha$	4
Решая совместно 2) и 3), с учётом того, что $(ctg\alpha)^2 + 1 = \frac{1}{(sin\alpha)^2}$	
4) $S = L\sqrt{\frac{1}{(\sin\alpha)^2} - 1} = L\sqrt{\left(\frac{v}{u}\right)^2 - 1} = 0$	5
Итого	20

По горизонтальной плоскости может перемещаться без трения гладкая горка высотой H и массой M и небольшое тело массой m (см. рисунок). На неподвижное тело массы m налетает горка. При какой минимальной скорости горки V_{\min} тело сможет переехать на другую сторону горки? Какими будут скорости тела и горки, если горка будет двигаться со скоростью меньшей, чем V_{\min} ? Большей чем V_{\min} ? При движении по горке тело не отрывается от нее.

Комментарии к <u>возможному</u> решению	Баллы
V M H M	2
Если $V = V_{min}$, в процессе взаимодействия, тело сможет подняться на горке на	
высоту H , после чего с нулевой относительно горки скоростью скатиться на	
противоположную сторону.	
Для взаимодействия тела и горки, закон сохранения импульса:	
$ 1) MV_{min} = (m+M)V^{\dagger}$, откуда $V^{\dagger} = \frac{M}{M+m}V_{min}$,	
где V^{\parallel} — проекция скоростей горки и груза на горизонтальную ось, со	5
направленную с вектором начальной скорости горки, в момент, когда груз	
поднимется на горку.	
Закон сохранения энергии:	
$2)\frac{MV_{min}^{2}}{2} = \frac{mV^{2}}{2} + \frac{MV^{2}}{2} + mgH,$	
Решая совместно 1) и 2):	
$3) V_{min} = \sqrt{2gH(1+\frac{m}{M})}$	5
Для взаимодействия тела и горки, закон сохранения импульса:	
4) $MV = mu + Mv$, откуда $V - v = \frac{m}{M}u$,	3

Где V , v и u — проекции скоростей горки на горизонтальную ось, со	
направленную с вектором начальной скорости, на до и после взаимодействия, и	
проекция скорости тела после взаимодействия.	
Закон сохранения энергии:	
$(5)\frac{MV^2}{2} = \frac{mu^2}{2} + \frac{Mv^2}{2}$, откуда $V^2 - v^2 = \frac{m}{M}u^2$	
Решая совместно 1) и 2) получаем два решения:	
6a) $u = \frac{2V}{1 + \frac{m}{M}}, v = V \frac{1 - \frac{m}{M}}{1 + \frac{m}{M}},$	3*
(66) u = 0, v = V.	
7) $u = \frac{2V}{1 + \frac{m}{M}}, v = V \frac{1 - \frac{m}{M}}{1 + \frac{m}{M}}$ – это решение при $V < V_{\min}$,	1
$(8) u = 0, v = V$ – это решение при $V > V_{\min}$.	1
Итого	20
* Если участник определял не проекции скоростей, а сами скорости, т.е. их	
модули, то для выполнения критерия, дополнительно необходимо указать	
направление скоростей в зависимости от соотношения масс $\frac{m}{M}$.	


Конструктор-энтузиаст создал летательный аппарат на мускульной силе. Масса аппарата m=25 кг, размах винта D=10 м. Масса пилота M=75 кг. Какую мощность должен развивать такой пилот, чтобы взлететь на такой машине? Какую мощность должен развивать пилот, чтобы подниматься вверх с ускорением a=0.1 м/с? Молярная масса воздуха μ = 29 кг/кмоль.

Комментарии к <u>возможному</u> решению	Баллы
Вращение винта приводит в движение воздух объёмом ΔV со скоростью v :	
1) $\Delta V = \pi D^2 \Delta l = \pi D^2 v \Delta t$, где Δl – высота цилиндра, Δt –небольшой интервал	2
времени.	
Масса воздуха, приводимого в движение:	2
2) $\Delta m = \rho \Delta V = \rho \pi D^2 v \Delta t$, где ρ — плотность воздуха.	2
Изменение импульса воздуха, приводимого в движение:	2
$3) \Delta m(v-0) = \rho \pi D^2 v^2 \Delta t$	2
Сила взаимодействия винтов и воздуха:	_
$4) F = \frac{\Delta mv}{\Delta t} = \rho \pi D^2 v^2$	2
Второй закон Ньютона:	
5) F = (m+M)(g+a)	2
Для взлёта достаточно $a=0$.	
Мощность, развиваемая винтами:	
6) $N = \frac{\Delta m v^2}{2\Delta t} = \frac{\rho \pi D^2}{2} v^3$	2
$L \triangle t$ L	
Из уравнения Менделеева-Клапейрона:	
7) $\rho = \frac{P\mu}{RT}$, где $P = 10^5$ Па– атмосферное давление, $T = 300$ К – температура, $R = 8.31$	3
Дж/моль °К – универсальная газовая постоянная.	
Из 4) и 5):	1

$8) v = \sqrt{\frac{(m+M)(g+a)}{\rho \pi D^2}}$	
Из 6) и 8): 8) $N = \frac{\rho \pi D^2}{2} \sqrt{\frac{(m+M)(g+a)}{\rho \pi D^2}}^3 = \frac{1}{2} (\rho \pi D^2)^{-1/2} ((m+M)(g+a))^{\frac{3}{2}}$	2
Для взлёта (a =0) 9) N = 827 Вт	1
Для подъёма с ускорением a =0.1 м/с 2 10) N = 840 Вт	1
Итого	20

КПД тепловой машины, работающей по циклу 1-2-3-1 равен η_1 , а по циклу 1-3-4-1 равен η_2 . Участок 1-2 линейный, 2-3 адиабатическое расширение, 3-1 изотермическое сжатие. 3-4 изобарное сжатие. 4-1 адиабатическое сжатие

Чему равен КПД тепловой машины, работающей по циклу 1-2-3-4-1? Рабочим веществом является идеальный газ.

Решение:

· · · · · · · · · · · · · · · · · · ·	
Комментарии к возможному решению	Баллы
КПД цикла 1-2-3-1:	
1) $\eta_1 = \frac{A_1}{Q_1}$, где A_1 — работа, совершённая газом за цикл, численно совпадающая с	4
площадью внутри цикла, Q_1 — тепло, подведённое к газу на участке 1-2	
КПД цикла 1-3-4-1:	
2) $\eta_2 = \frac{A_2}{Q_2}$, где A_2 — работа, совершённая газом за цикл, численно совпадающая с	4
площадью внутри цикла, Q_2 — тепло, подведённое к газу на участке 1-3	
Поскольку, процессы 2-3 и 4-1 – адиабатические, то в них тепло не подводится, и	
не отводится. Тогда искомое КПД цикла 1-2-3-4-1:	4
$3) \eta = \frac{A_1 + A_2}{Q_1}$	
Для цикла 1-2-3-1 Q_2 это тепло, передаваемое холодильнику:	4
$4) Q_1 = A_1 + Q_2$	4
Решая совместно 1)-4):	
5) $\eta = \frac{A_1 + A_2}{Q_1} = \frac{A_1}{Q_1} + \frac{A_2}{Q_1} \frac{Q_2}{Q_2} = \eta_1 + \eta_2 \frac{Q_1 - A_1}{Q_1} = \eta_1 + \eta_2 (1 - \eta_1) = \eta_1 + \eta_2 - \eta_1 \eta_2$	4
Итого	20

Оценка задания №№ 1 – 5 по 20 баллов

Внимание!

Задача считается решённой, если, помимо правильного ответа, приведены необходимые объяснения. Решение оценивается поэтапно.

Желаем успеха!

Министерство науки и высшего образования РФ

Совет ректоров вузов Томской области

Открытая региональная межвузовская олимпиада

2021-2022 ФИЗИКА

10 класс

2 Вариант. II этап.

Задача 1

Два омметра подсоединили параллельно, соблюдая полярность подключения. К общим выходам омметров подключили резистор неизвестного сопротивления R, при этом показания первого омметра оказались равными R_1 , второго — R_2 . Чему равно истинное значение R?

Омметры хоть и были от разных производителей, но измерения производили довольно точные. Подключение любого одно из двух омметров к резистору дало бы ответ на вопрос.

Примечание. Омметр можно представить, как последовательно соединённые батарейку, резистор некоторого сопротивления и амперметр.

Комментарии к возможному решению	Баллы
Рассмотрим схему работы омметра. Источник с ЭДС ϵ , сопротивлением r и идеальный амперметр соединены последовательно. Используя закон Ома для полной цепи, можно установить, что показания омметра (сопротивление внешнего резистора R): 1) $R = \frac{\epsilon}{I} - r$, где I – ток, протекающий через омметр.	5
2) С учётом того, что омметры различны, схема подключения:	2
Согласно первому правилу Кирхгофа: 3) $I_1 + I_2 = I_R$, где I_1 и I_2 — токи через омметры, I_R — ток через резистор	1
Согласно второму правилу Кирхгофа: 4) $\mathcal{E}_1 = I_1 r_1 + I_R R$, $\mathcal{E}_2 = I_2 r_2 + I_R R$	3
Показания омметров с учётом 1) и 3): 5) $R_1 = \frac{\varepsilon_1}{l_1} - r_1$, $R_2 = \frac{\varepsilon_2}{l_2} - r_2$ Решая совместно 3), 4) и 5) относительно R :	3
Решая совместно 3), 4) и 5) относительно R : 6) $R = \frac{R_1 R_2}{R_1 + R_2}$	6
Итого	20

Турист пересекает на байдарке бурную реку шириной L=800 м. Скорость течения V=1.15 м/с, скорость, с которой турист может двигаться относительно воды U=1.00 м/с. Как должен двигаться турист, чтобы его снесло на наименьшее расстояние? На какое расстояние его снесёт в этом случае?

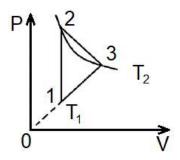
Решение:

Комментарии к возможному решению	Баллы
O NOTH WILL X	2
1) Скорость движения туриста относительно берегов (абсолютная скорость) определяется векторной суммой скоростей воды, относительно берега (переносная скорость), и туриста относительно воды (относительная скорость).	5
Снос будет минимальным, если траектория движения туриста будет проходить по касательной к окружности всех возможных значений абсолютной скорости. Угол между $v_{\text{отн}}$ и u прямой: 2) $sin\alpha = \frac{u}{v_{\text{oth}}}$	4
Связь перемещений вдоль течения S и поперёк реки L : 3) $tg\alpha = \frac{L}{s}$, где S – снос туриста вдоль течения, откуда $S = L \ ctg\alpha$	4
Решая совместно 2) и 3), с учётом того, что $(ctg\alpha)^2 + 1 = \frac{1}{(sin\alpha)^2}$ 4) $S = L\sqrt{\frac{1}{(sin\alpha)^2} - 1} = L\sqrt{\left(\frac{v}{u}\right)^2 - 1} = 454$ м	5
Итого	20

Задача 3

По горизонтальной плоскости может перемещаться без трения доска массы M. На левом краю доски покоится небольшое тело массой m. Пружину жесткости k одним концом прикрепили к доске, а другим — к вертикальной стене. В начальный момент времени доске и грузу сообщают скорость v_0 , направленную влево, пружина в этот момент была нерастянута. При каком минимальном коэффициенте трения μ между доской и грузом, груз не упадёт с доски в процессе дальнейшего движения системы?

Комментарии к возможному решению	Баллы
Максимальное ускорение, которое может обеспечить телу массы m сила трения:	2


1) $a_{max} = \mu g$	
Пока груз ещё не скользит по доске, они двигаются под действием силы упругости	
как одно тело массы $M+m$:	
3) $a_{\text{системы}} = \frac{kx}{M+m}$, где x – растяжение пружины	3
Видно, что в начальный момент времени ускорение системы минимально, а значит	
в начале доска и груз двигаются без проскальзывания.	
Закон сохранения энергии для начального состояния и состояния с максимальным	
растяжением пружины:	5
$4) \frac{(M+m)v_0^2}{2} = \frac{kx_{max}^2}{2}$, откуда $x_{max} = v_0 \sqrt{\frac{(M+m)}{k}}$,	3
С учётом 3) и 4) максимальное ускорение системы:	
5) $a_{max} = \frac{k}{M+m} x_{max} = \frac{k}{M+m} v_0 \sqrt{\frac{(M+m)}{k}} = v_0 \sqrt{\frac{k}{(M+m)}}$	5
Груз не сдвинется с места, при минимальном коэффициенте трения:	
$6) \mu = \frac{v_0}{g} \sqrt{\frac{k}{(M+m)}}$	5
Итого	20

Конструктор-энтузиаст создал летательный аппарат на мускульной силе. Масса аппарата m=20 кг, размах винта D=10 м. Масса пилота M=60 кг. Какую мощность должен развивать такой пилот, чтобы взлететь на такой машине? Какую мощность должен развивать пилот, чтобы подниматься вверх с ускорением a=0.1 м/с? Молярная масса воздуха μ = 29 кг/кмоль.

Комментарии к возможному решению	Баллы
Вращение винта приводит в движение воздух объёмом ΔV со скоростью v :	
1) $\Delta V = \pi D^2 \Delta l = \pi D^2 v \Delta t$, где Δl — высота цилиндра, Δt —небольшой интервал	2
времени.	
Масса воздуха, приводимого в движение:	2
2) $\Delta m = \rho \Delta V = \rho \pi D^2 v \Delta t$, где ρ — плотность воздуха.	2
Изменение импульса воздуха, приводимого в движение:	2
$3) \Delta m(v-0) = \rho \pi D^2 v^2 \Delta t$	2
Сила взаимодействия винтов и воздуха:	
$4) F = \frac{\Delta m v}{\Delta t} = \rho \pi D^2 v^2$	2
Второй закон Ньютона:	
5) F = (m+M)(g+a)	2
Для взлёта достаточно $a=0$.	
Мощность, развиваемая винтами:	
6) $N = \frac{\Delta m v^2}{2\Delta t} = \frac{\rho \pi D^2}{2} v^3$	2
Из уравнения Менделеева-Клапейрона:	
7) $\rho = \frac{P\mu}{RT}$, где $P = 10^5$ Па– атмосферное давление, $T = 300$ К – температура, $R = 8.31$	3
Дж/моль $^{\circ}K$ — универсальная газовая постоянная.	

Из 4) и 5):	
$8) v = \sqrt{\frac{(m+M)(g+a)}{\rho \pi D^2}}$	1
Из 6) и 8):	
8) $N = \frac{\rho \pi D^2}{2} \sqrt{\frac{(m+M)(g+a)^3}{\rho \pi D^2}}^3 = \frac{1}{2} (\rho \pi D^2)^{-1/2} ((m+M)(g+a))^{\frac{3}{2}}$	2
Для взлёта (a =0)	1
9) $N = 592 \text{ BT}$	1
Для подъёма с ускорением a =0.1 м/с ²	1
$10) N = 601 \mathrm{Br}$	1
Итого	20

Тепловая машина, рабочим телом в которой является гелий в количестве ν , работает по циклу, показанному на рисунке. Цикл состоит из изохоры 1-2, линейного процесса 2-3, конечные точки которого можно соединить изотермой с температурой T_2 , и линейного процесса 1-3, в котором давление пропорционально объёму. Температура T_1 гелия в точке 1 известна. Определите работу газа, совершаемую за цикл, и КПД тепловой машины.

Комментарии к возможному решению	Баллы
1) Запишем уравнения Менделеева-Клапейрона для состояний 1, 2 и 3, с учётом того, что в состояниях 1 и 2 одинаковые объёмы, а в состояниях 2 и 3 – одинаковые температуры: $P_1V_1 = \nu RT_1$, $P_2V_1 = \nu RT_2$, $P_3V_3 = \nu RT_2$	3
Искомая работа — площадь внутри цикла, находится как площадь треугольника. В данном случае основанием треугольника является $P_2 - P_1$, а высотой $V_3 - V_1$: 2) $A = \frac{1}{2}(P_2 - P_1)(V_3 - V_1) = \frac{1}{2}P_1V_1\left(\frac{P_2}{P_1} - 1\right)\left(\frac{V_3}{V_1} - 1\right)$	2
По условию для процесса 1-3: 3) $P_1 = \alpha V_1$, $P_3 = \alpha V_3$, откуда $\frac{P_3}{P_1} = \frac{V_3}{V_1}$	2
Из 1) с учётом 3): 4) $\frac{P_3V_3}{P_1V_1} = \frac{T_2}{T_1} = (\frac{V_3}{V_1})^2$, откуда $\frac{V_3}{V_1} = \frac{P_3}{P_1} = \sqrt{\frac{T_2}{T_1}}$	1
Из 1): 5) $\frac{P_2V_1}{P_1V_1} = \frac{T_2}{T_1}$, откуда $\frac{P_2}{P_1} = \frac{T_2}{T_1}$ Из 2) с учётом 4) и 5):	1
Из 2) с учётом 4) и 5): 6) $A = \frac{1}{2}(P_2 - P_1)(V_3 - V_1) = \frac{1}{2}P_1V_1\left(\frac{P_2}{P_1} - 1\right)\left(\frac{V_3}{V_1} - 1\right) = \frac{1}{2}\nu RT_1\left(\frac{T_2}{T_1} - 1\right)\left(\sqrt{\frac{T_2}{T_1}} - 1\right)$	4
Тепло к газу подводится в процессах 1-2 и 2-3. С учётом того, что в процессе 1-2 газ не совершает работу, а в процессе 2-3 изменение внутренней энергии газа равно нулю, суммарное подведённое к газу тепло: 7) $Q = Q_{12} + Q_{23} = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} (P_3 + P_2) (V_3 - V_1)$	2

С учётом 1), 4) и 5):	
8) $Q = \frac{3}{2} \nu R(T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\frac{P_3}{P_1} + \frac{P_2}{P_1} \right) \left(\frac{V_3}{V_1} - 1 \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{T_2}{T_1} \right) \left(\frac{V_3}{V_1} - \frac{V_3}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_2 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_1 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R (T_1 - T_1) + \frac{1}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu R T_1 \left(\sqrt{\frac{T_2}{T_1}} + \frac{V_2}{V_1} \right) = \frac{3}{2} \nu$	2
$ \frac{T_2}{T_1} \left(\sqrt{\frac{T_2}{T_1}} - 1 \right) = \frac{3}{2} \nu R(T_2 - T_1) + \frac{1}{2} \nu R T_1 \sqrt{\frac{T_2}{T_1}} \left(\frac{T_2}{T_1} - 1 \right) = \frac{1}{2} \nu R(T_2 - T_1) (3 + \sqrt{\frac{T_2}{T_1}}) $	
Окончательно КПД цикла:	
9) $ \eta = \frac{A}{Q} = \frac{\frac{1}{2} \nu_R T_1 \left(\frac{T_2}{T_1} - 1\right) \left(\sqrt{\frac{T_2}{T_1}} - 1\right)}{\frac{1}{2} \nu_R (T_2 - T_1) \left(3 + \sqrt{\frac{T_2}{T_1}}\right)} = \frac{\left(\sqrt{\frac{T_2}{T_1}} - 1\right)}{\left(3 + \sqrt{\frac{T_2}{T_1}}\right)} $	3
Итого	20

Оценка задания №№ 1 – 5 по 20 баллов

Внимание!

Задача считается решённой, если, помимо правильного ответа, приведены необходимые объяснения. Решение оценивается поэтапно.

Желаем успеха!