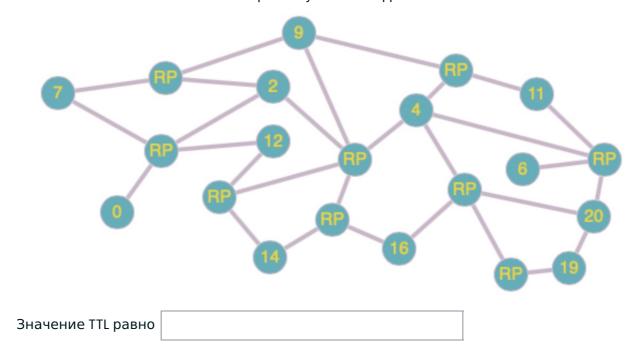

<u> </u>	
+	
Т	сайта
	Вопрос 1
	Балл: 6,00
L	
	Некое вычислительное устройство запрограммировано выполнять следующие арифметические операции: умножение, деление и вычитание. На вход устройству подают следующее выражение:
	$X = (21_5 * 10_6) - (1E_{16}/1111_2)$
	Сколько двоек присутствует в троичной записи числа Х?
	Ответ:
	Правильный ответ: 1
	Правильный ответ: 1 Вопрос 2 Балл: 6,00 В колебательном контуре FM-радиоприёмника используется переменный конденсатор для настройки частоты на радиостанцию. Для того чтобы настроиться на радиостанцию на частоте 100 МГц, нужно задать значение ёмкости конденсатора 400 нФ. В настоящий момент принимается радиостанция, работающая на частоте 110 МГц; для этого было задано значение ёмкости конденсатора нФ.
	Правильный ответ: 1 Вопрос 2 Балл: 6,00 В колебательном контуре FM-радиоприёмника используется переменный конденсатор для настройки частоты на радиостанцию. Для того чтобы настроиться на радиостанцию на частоте 100 МГц, нужно задать значение ёмкости конденсатора 400 нФ. В настоящий момент принимается радиостанция, работающая на частоте 110 МГц;

Одному робототехнику необходимо отремонтировать роботизированный промышленный манипулятор. Для этого необходимо изучить техническое руководство по работе вышедшей из строя микросхемы. В техническом документации робототехник обнаружил схему нужного логического модуля.

Определите бинарную последовательность на выходе F, если на входы логического модуля x1,x2,x3,x4 подать все возможные комбинации двоичных символов от меньшей к большей. Ответ необходимо записать последовательно, начиная с наибольшей двоичной комбинации сигналов (например, 1111000...)


Ответ:		
Ответ:		

Правильный ответ: 1111000011110010

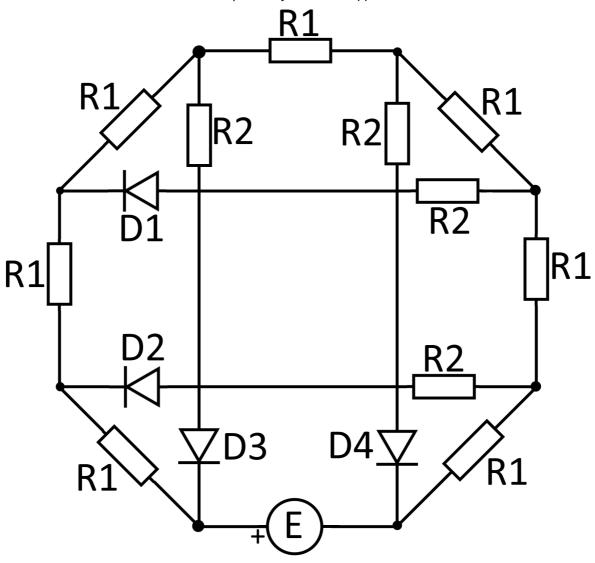
Вопрос **4** Балл: 10,00

TTL (Time to live) — время жизни пакета данных в протоколе IP (предельно допустимое время его пребывания в системе), определяющее максимальное количество переходов пакета между узлами сети.

Дана топология сети. Определить минимальный TTL, чтобы пакет был передан из узла 0 в узел 6. TTL уменьшается на 1 при прохождении пакета через ретранслятор (RP).

Правильный ответ: 3

Вопрос **5** Балл: 10,00


В вакуумном диоде расстояние между катодом и анодом равно l см, а разность потенциалов между ними в начальный момент равна 440 В. Электрон (с зарядом $1, 6 \cdot 10^{-19}\,$ Кл и массой $9, 1 \cdot 10^{-31}$ кг) начинает движение с нулевой скоростью.

Если поле между электродами считать равномерным, а силой тяжести пренебречь, время движения электрона между первым и вторым электродом составит нс. (округлите до одного знака после запятой).

Правильный ответ: 1.6

вопрос Инфо

Из резисторов с номиналами R1 = 40 Ом, R2 = 70 Ом, идеальных диодов и идеального источника E = 8 В собрали схему

Вопрос 6	
Балл: 4,00	
Полное сопротивление цепи равно (округлите до целых)	Ом
Правильный ответ: 204	
Вопрос 7	
Балл: 3,00	
Напряжение на D3 равно после запятой)	В, (округлите до одного знака

Правильный ответ: 4.7

Вопрос 8 Балл: 3,00	
Ток, текущий через D4 равен знака после запятой)	мА (округлите до одного
Правильный ответ: 24,7	
Вопрос Инфо	

При тестировании электронной схемы управления лифтом потребовалось оценить поведение кнопки вызова лифта. По результатам анализа были составлены две электрические схемы, представляющие исходное состояние кнопки (рис. l.a) и нажатое состояние кнопки (с учётом небольшой утечки тока через палец, рис. l.б). В обоих случаях оказалось, что поведение кнопки адекватно выражается при помощи комбинации ёмкостей C_1, C_2, C_3 , г д е $C_1 = C_2 = C_3 = 48$ м к Φ .

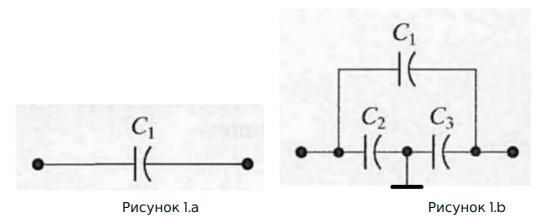


Схема опыта по тестированию реакции кнопки приведена на рисунке 2. Она включает в себя источник питания E=30 В, схему кнопки (в виде A или Б), а также вольтметр, подключённый к замыкающему конденсатору $C=48\,\mathrm{M}$ к Φ .

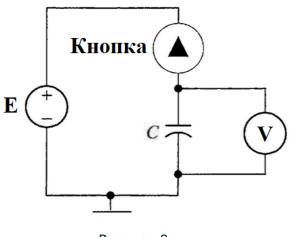
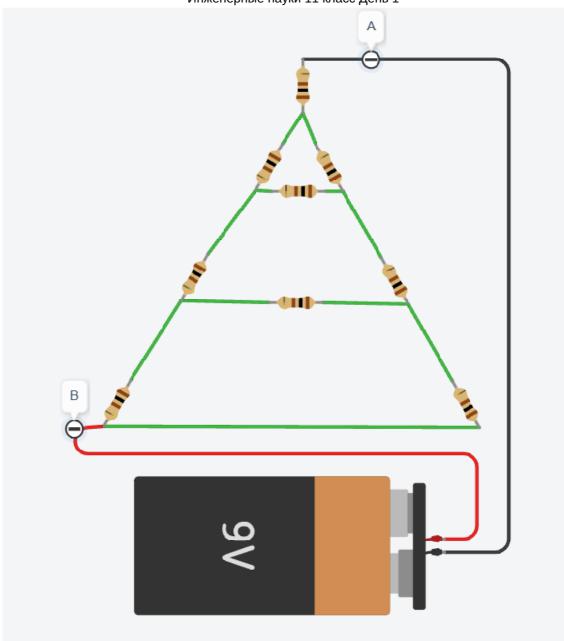



Рисунок 2.

Вопрос 9
Балл: 5,00
Определите, какое напряжение показывает вольтметр на конденсаторе С для случая ненажатой (а) кнопки (ответ округлите до целых).
Ответ:
Правильный ответ: 15
Вопрос 10 Балл: 5,00
Определите, какое напряжение показывает вольтметр на конденсаторе С для случая нажатой (б) кнопки (ответ округлите до целых).
Ответ:
Правильный ответ: 10
Вопрос Инфо

Студент выполнял некоторое задание в системе tinkercad.com и решил в честь нового года построить "электрическую елочку" из резисторов номиналом R=100 Ом. Для того, чтобы по данной цепи протекал ток, студент подключил к "электрической елочке" батарейку с напряжением 9В.

Вопрос 11			
Балл: 5,00			

Определите эквивалентное сопротивление "елочки" на участке А-В. Ответ запишите в Омах (округлите до целых).

Ответ:

Правильный ответ: 250

Вопрос **12**

Определите величину тока, протекающего через "елочку" на участке А- В. От	вет
запишите в милиАмперах (округлите до целых)	

Ответ:

Правильный ответ: 36

вопрос Инфо

Для управления некоторой системой использовались три сигнала. Ниже представлена их кодовая таблица

Сигналы	Кодовое слово	Кодовое слово
Сигналы	(десятичное представление	е)(двоичное представление)

Α	591	01001001111
В	1041	10000010001
С	268	00100001100

Теперь необходимо доработать систему и внести четвертый управляющий сигнал D.

Предложите десятичное представление минимального числа, которое может выступить кодовым словом для четвертого сигнала, чтобы кодовое расстояние не изменилось.

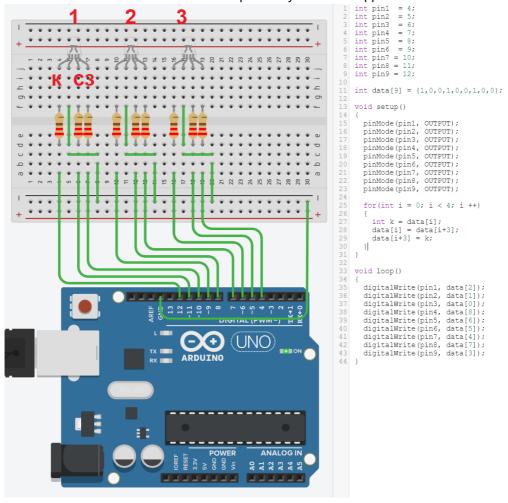
Для справки:

Кодовое расстояние – минимальное из расстояний Хэмминга среди всех пар различных кодовых слов:

$$d = \min\{p(x, y): x \neq y\}$$

Расстояние Хэмминга p между кодовыми словами x, y определяется как вес ω (количество единиц в записи) выражения $(x \ XOR \ y)$:

$$p(x, y) = \omega(x \oplus y)$$


Пример: $p(0011, 0101) = \omega(0110) = 2$

Вопрос 13

Балл: 6,00

Кодовое расстояние предложенного кода равно
Правильный ответ: 5
Вопрос 14
Балл: 9,00
Десятичное представление <u>минимального</u> числа для сигнала D равно
Правильный ответ: 34
Вопрос Инфо

После электромагнитной бури, индикационная панель звездолета была частично испорчена, и она больше не работает корректно. Капитан нашел электронную схему панели, а также смог восстановить программу управления. По инструкции в штатном режиме работы звездолета RGB-светодиоды могут гореть одним из трех цветов: красным, синим, зеленым цветом или не гореть совсем.

Ответьте на вопросы ниже.

```
Вопрос 15
Балл: 9,00
```

Какие светодиоды будут включены и каким цветом они будут гореть при данной конфигурации схемы и программного кода.

В ответ запишите комбинацию первых букв цвета каждого светодиода (например, КСЗ). Если светодиод не должен быть включен, то укажите цифру ноль (0) (например, КОС)

Ответ:	

Правильный ответ: КСК

```
Вопрос 16
Балл: 6,00
```

Какие значения в массиве data должны быть в начале работы алгоритма, чтобы светодиод №1 загорелся желтым, светодиод №2 загорелся белым, а светодиод №3

Этвет:	
]равильный ответ: l11010101	