Задачи очного тура 10 класса

Сюжет 4

Во всех пунктах под f(x), g(x), h(x) подразумеваются многочлены с вещественными коэффициентами.

- **4.1.** Пусть $f(x) = x^2 x + 1$, $g(x) = -x^2 + x + 1$. Найдите такой непостоянный многочлен h, что h(f(x)) = h(g(x)).
- **4.2.** Докажите, что не существует квадратных трёхчленов f и g, таких что $f(g(x)) = x^4 3x^3 + 3x^2 x$.

4.3. Пусть h — непостоянный многочлен, $f \neq g$, u пусть h(f(x)) = h(g(x)). Докажите, что f + g — постоянный многочлен.

4.4. Пусть непостоянные различные многочлены f и g c положительными старшими коэффициентами таковы, что

$$\begin{split} f(f(x)g(x)) + f(g(x)) \cdot g(f(x)) + f(f(x)) \cdot g(g(x)) &= \\ &= g(f(x)g(x)) + f(f(x)) \cdot f(g(x)) + g(f(x)) \cdot g(g(x)). \end{split}$$

Докажите, что f и g отличаются только одним коэффициентом.

Сюжет 5

См. сюжет 2 класса 9.

Сюжет 6

Есть две полоски длиной k. В первой самой левой клетке каждой из полосок стоит n фишек. Двое играют в следующую игру: Паша своим ходом сдвигает произвольное множество фишек на одну клетку вправо, а Рома снимает с поля все только что сдвинутые фишки из какой-то из полосок по своему выбору.

6.1. Пусть k=4, n=3. Всегда ли Паша может добиться того, чтобы одна из фишек дошла до последней клетки?

6.2. Пусть k=4, n=100 и Паша каждым ходом сдвигает фишки в полоске только из каких-то двух клеток (по одной в каждой полоске). Докажите, что Рома может добиться того, что не более 50 фишек (с учетом снятых) попадут в последние клетки своих полосок.

6.3. Пусть $n < 2^{k-3}$. Докажите, что Рома может сделать так, что ни одна из фишек не дойдёт до конца.

6.4. Пусть $n > k \cdot 2^k$. Докажите, что Паша может сделать так, что хотя бы одна из фишек дойдёт до конца.