ЗАДАНИЕ ПО ФИЗИКЕ 10 класс

4. Маленький тяжёлый шарик, подвешенный на лёгкой нерастяжимой нити, совершает колебания в вертикальной плоскости. В момент наибольшего отклонения шарика от положения равновесия его ускорение составляет a=3g/5, а максимальная высота, на которую поднимается шарик (если её отсчитывать от положения равновесия), составляет $h=20\,$ см. Определите длину нити.

Решение.

В точке максимального отклонения ускорение только тангенциальное, поэтому

$$a = g sin\alpha; \quad cos\alpha = \sqrt{1 - \left(\frac{a}{g}\right)^2} \\ h = l \cdot (1 - cos\alpha) \\ l = \frac{h}{1 - \sqrt{1 - \left(\frac{a}{g}\right)^2}} = \frac{20}{1 - \sqrt{1 - \frac{9}{25}}} = 20 \cdot 2 = 100 \text{ cm} = 1 \text{ m}$$

Олимпиада школьников «Надежда энергетики». Отборочный этап. Очная форма.

5. Пузырек воздуха медленно всплывает из глубины. На глубине 5 м радиус пузырька составил 1 мм. Во сколько раз изменится масса паров воды в этом пузырьке, когда до поверхности ему останется 10 см? Вкладом сил поверхностного натяжения пренебречь, температуру воды считать неизменной.

Решение.

Давление в пузырьке складывается из атмосферного, гидростатического и поверхностного натяжения (которым пренебрегаем). Таким образом $P_1 = P_0 + \rho g h_1$, а $P_2 = P_0 + \rho g h_2$. Можно также пренебречь гидростатическим давлением на небольшой глубине h_1 . Т.к. процесс медленный, а пузырек маленький, то температура внутри пузырька успевает выровняться с температурой воды, а влажность остается 100%, следовательно парциальное давление (плотность) паров воды неизменно. Следовательно, отношение масс паров воды в пузырьке в начале и в конце процесса определяется только отношением начального и конечного объемов пузырька: $\frac{m_2}{m_1} = \frac{V_2}{V_1} = \frac{\left(P_0 + \rho g h_1\right)}{P_0 + \rho g h_2}.$

Ответ: увеличится в 1,5 раза

6. Нормальное ускорение частицы постоянно по модулю. Нарисуйте траекторию движения частицы, если проекция тангенциального ускорения на направление вектора скорости больше нуля. Объясните рисунок.

Решение.

По условию задачи тангенциальное ускорение частицы сонаправлено с вектором скорости, т.е. модуль скорости увеличивается. Поскольку нормальное ускорение $(a_n = \frac{V^2}{R})$ постоянно по величине, то радиус кривизны траектории увеличивается. Траектория движения частицы – раскручивающаяся спираль.

7. Уравнение траектории мяча имеет вид $y = x - kx^2$, где k – размерный коэффициент. Определите максимальную высоту подъема мяча.

Решение.

Из уравнения траектории следует, что:

- 1. мяч брошен под углом 45° к горизонту,
- 2. дальность полета мяча равна $\frac{1}{\kappa} = 2 sin \alpha cos \alpha \frac{v_0^2}{g}$.

Максимальная высота подъема равна $sin^2 \alpha \frac{v_0^2}{2g} = \frac{1}{4\kappa}$.