Указания по оцениванию работ заключительного тура Политехнической олимпиады по физике

Вариант, выдаваемый участнику, содержит 6 задач различной степени сложности.

Оценка работы складывается из баллов, полученных за каждую отдельную задачу.

Максимальный вклад задачи средней сложности равен 10 баллам (две задачи), повышенной сложности – 15 (две задачи), сложной – 20 (одна задача), нестандартной – 30 (одна задача). Максимальная оценка за работу 100 баллов.

По результатам проверки за решение каждой задачи варианта выставляется один из следующих коэффициентов:

- 1,0 задача решена правильно;
- 0,8 задача решена правильно и получен ответ в общем виде; есть ошибка в единице измерения полученной физической величины или арифметическая ошибка;
- 0,6 задача решена не полностью; имеются все необходимые для ее решения физические соотношения; есть ошибка в алгебраических преобразованиях;
- **0,4** задача решена не полностью; отсутствуют некоторые физические соотношения, необходимые для решения задачи;
- 0,2 задача не решена; в работе имеются лишь отдельные записи, относящиеся к решению данной задачи или к описанию явления, рассматриваемого в задаче;
- 0,0 решение задачи или относящиеся к нему какие-либо записи в работе отсутствуют.

Коэффициент выносится в таблицу «Лист ответов» в первый столбик «Колонки для преподавателя». Во второй столбик колонки ставится балл, равный произведению коэффициента, полученного за решение, и максимального балла за данную задачу.

Полученные баллы суммируются и выставляются в строчку «Итого».

Таблица перевода коэффициентов в баллы.

тах балл коэфф.	10	15	20	30
1	10	15	20	30
0,8	8	12	16	24
0,6	6	9	12	18
0,4	4	6	8	12
0,2	2	3	4	6
0	0	0	0	0

ЛИСТ ОТВЕТОВ				
№ п/п	ВАРИАНТ № 1 ВАШИ ОТВЕТЫ	Колонки для преподавателя		
1	$\upsilon_{1m} = \frac{L}{2} \sqrt{\frac{2\kappa}{3m}} \; ; \; \upsilon_{2m} = \frac{L}{2} \sqrt{\frac{\kappa}{6m}}$	10		
2	$H = \frac{gT^2}{8\pi^2} \cdot \frac{\rho_1 + \rho_2}{\rho_0}$	30		
3	$A_{34} = A_{12} \cdot \frac{3vRT}{3vRT + 2A_{23}}$	15		
4	$\frac{ F_{oo} }{ F_{nocne} } = \frac{ q_1 q_2 }{r_1 r_2} \cdot \left(\frac{r_1 + r_2}{q_1 + q_2}\right)^2 = 2$	10		
5	$\frac{\left B_{I}\right }{\left B_{II}\right } = \frac{8}{5}$	20		
6	$\Gamma_2 = 3;\;\;$ увеличение изображения не изменится, но оно станет мнимым и прямым	15		
	ИТОГО:			
Подпись преподавателя				

$$m_1 = m$$
; $m_2 = 2m$

$$\kappa$$
 ;
$$\ell_0 = L \text{ ; } \ell_1 = \eta L$$

$$\eta = 1.5 \text{ ; }$$

$$v_{1\max}, v_{2\max} - ?$$

Из ЗСИ
$$\Rightarrow \ p_{1m} = p_{2m} = p_m \ \Rightarrow \ v_{1m,2m} = \frac{p_m}{m_{1,2}}$$

Задача 1 (10)
$$m_1=m \ ; m_2=2m$$
 из 3СЯ $\Rightarrow p_{1m}=p_{2m}=p_m \Rightarrow v_{1m,2m}=\frac{p_m}{m_{1,2}}$ из 3СЭ $\Rightarrow \frac{\kappa\Delta\ell^2}{2}=\frac{p_m^2}{2m_1}+\frac{p_m^2}{2m_2} \Rightarrow p_m=\Delta\ell\sqrt{\frac{\kappa m_1 m_2}{m_1+m_2}}$

$$\upsilon_{1m} = \left|\Delta\ell\right| \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}} = \left(\eta - 1\right) L \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}}$$

Otbet:
$$\upsilon_{1m}=\frac{L}{2}\sqrt{\frac{2\kappa}{3m}}$$
 ; $\upsilon_{2m}=\frac{L}{2}\sqrt{\frac{\kappa}{6m}}$.

Задача 2 (30)

Запишем II закон Ньютона при смещении цилиндров из положения равновесия на малое расстояние x:

$$m_1 \, = \, m_2 \, = \, m$$

 $\rho_0; \rho_1; \rho_2$

 $ma_1 = -\rho_1 gS \cdot x + T$ (1); $ma_2 = +\rho_2 gS \cdot x + T$

Учитывая связь цилиндров $a_1 = -a_2 = a$, и вычитая (2) из (1), получаем:

$$2ma = -\left(\rho_1 + \rho_2\right)gS \cdot x$$
 ;

Заменив m в левой части на $m=
ho_0 V=
ho_0 SH$, получаем уравнение колебаний

$$a=-rac{\left(
ho_1+
ho_2
ight)g}{2
ho_0H}\cdot x$$
 с периодом $T=2\pi\sqrt{rac{2
ho_0H}{\left(
ho_1+
ho_2
ight)g}}$

H-?

Ответ: $H = \frac{gT^2}{8\pi^2} \cdot \frac{\rho_1 + \rho_2}{\rho_0}$

Задача 3 (15)

$$A_{12} \left(T_{12} = Const \right)$$

$$A_{23}(Q_{23}=0)$$

$$T_{34} = T$$

Процессы 1-2 и 3-4 изотермические $\left(\Delta U=0\right)$ $\Rightarrow~A_{12}=Q^+$; $A_{23}=Q^-$;

$$A_{12}\left(T_{12}=Const
ight)$$
 КПД: $\eta=1-rac{T_{34}}{T_{12}}$ (1) и $\eta=1-rac{Q^-}{Q^+}=1-rac{A_{34}}{A_{12}}$ (2), получаем $A_{34}=A_{12}\cdotrac{T_{34}}{T_{12}}$ (3). $A_{23}\left(Q_{23}=0
ight)$ $Q_{23}=0 \ \Rightarrow \ A_{23}=-\Delta U_{23}=rac{3}{2}
u R\left(T_{12}-T_{34}
ight) \ \Rightarrow \ T_{12}=T_{34}+rac{2A_{23}}{3
u R}$ (4)

$$Q_{23}=0 \Rightarrow A_{23}=-\Delta U_{23}=rac{3}{2}
u Rig(T_{12}-T_{34}ig) \Rightarrow T_{12}=T_{34}+rac{2A_{23}}{3
u R}$$
 (4

$$T_{34}=T$$
 Из (3) и (4) получаем $A_{34}=A_{12}\cdot rac{T_{34}}{T_{34}+rac{2A_{23}}{3
u R}}$

$$A_{34} - ?$$

Ответ: $A_{34} = A_{12} \cdot \frac{3\nu RT}{3\nu RT + 2A_{12}}$

Задача 4 (10)

$$q_1 = -q$$

$$q_2 = +4q$$

$$r_1 = R$$

$$r_2 = 2R$$

$$\frac{\left|F_{before}\right|}{\left|F_{-\mu}\right|} - i$$

$$F_{Coulomb} = rac{1}{4\piarepsilon_0} \cdot rac{q_1q_2}{r^2} \, \Rightarrow rac{\left|F_{before}
ight|}{\left|F_{after}
ight|} = \left|rac{q_1q_2}{q_1^{\prime}q_2^{\prime}}
ight|$$

При соединении шариков их потенциалы выравниваются $\,arphi_1 = arphi_2 \, \Rightarrow \,$

$$rac{q_1'}{C_1}=rac{q_2'}{C_2}$$
, где $C_{1,2}=4\piarepsilon_0r_{1,2}$ - электроемкости шариков $\Rightarrow~q_1'\cdot r_2=q_2'\cdot r_1$ (1)

Используя закон сохранения заряда $\,q_1^{}\,+\,q_2^{}\,=\,{q_1^{}}'\,+\,{q_2^{}}'\,$ из (1) получаем:

 ${q_1}'=rac{q_1+q_2}{r_1+r_2}r_1$ и ${q_2}'=rac{q_1+q_2}{r_1+r_2}r_2$, тогда отношение сил взаимодействия будет равно

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} = \left|\frac{q_1q_2}{q_1'q_2'}\right| = \frac{\left|q_1q_2\right|}{r_1r_2} \cdot \left(\frac{r_1+r_2}{q_1+q_2}\right)^2.$$

Ответ:
$$rac{\left|F_{before}
ight|}{\left|F_{after}
ight|} = rac{\left|4q^2
ight|}{2R^2} \cdot \left(rac{3R}{3q}
ight)^2 = 2 \, .$$

Задача 5 (20)

$$R_{12} = R_{34} = 10hm$$

$$R_{23}\,=\,R_{41}\,=\,2\,Ohm$$

Магнитное поле каждой стороны квадрата пропорционально силе тока в ней I способ подключения:

Ток в ветви 1-2 : $I_{12}=\frac{U}{R_{12}}$, ток в ветви 1-4-3-2 : $I_{1432}=\frac{U}{R_{41}+R_{34}+R_{23}}$

Учитывая противоположное направление токов и количество сторон (1:3):

$$B_I \, \propto \frac{1}{R_{12}} - \frac{3}{R_{41} + R_{34} + R_{23}} \ . \label{eq:BI}$$

II способ подключения: аналогично получаем $B_{II} \propto \frac{3}{R_{12} + R_{41} + R_{34}} - \frac{1}{R_{23}}$

$$\frac{\left|B_{I}\right|}{\left|B_{II}\right|} - ?$$

$$\textbf{OTBET:} \ \frac{\left|B_{I}\right|}{\left|B_{II}\right|} = \frac{\frac{1}{R_{12}} - \frac{3}{R_{41} + R_{34} + R_{23}}}{\frac{3}{R_{12} + R_{41} + R_{34}} - \frac{1}{R_{23}}} = \frac{\frac{1}{1} - \frac{3}{2 + 1 + 2}}{\frac{3}{1 + 2 + 1} - \frac{1}{2}} = \frac{\frac{2}{5}}{\frac{1}{4}} = \frac{8}{5}.$$

Задача 6 (15)

$$\Gamma_1 = 3$$

$$D_2\,=\frac{1}{2}\,D_1$$

$$d_1 = d_2 = d$$

$$\Gamma_2 - ?$$

Из формулы тонкой линзы $\pm \frac{1}{f} + \frac{1}{d} = D$ и определения увеличения $\Gamma = \frac{H}{h} = \frac{f}{d}$

исключаем расстояние до изображения f и получаем $D_{1,2}d=1\pm rac{1}{\Gamma_{1,2}} \Rightarrow$

$$\Rightarrow \ D_2 \cdot \left(1 + \frac{1}{\Gamma_1}\right) = D_1 \cdot \left(1 - \frac{1}{\Gamma_2}\right) \ \Rightarrow \ \Gamma_2 = \frac{1}{1 - \frac{D_2}{D_1} \cdot \left(1 + \frac{1}{\Gamma_1}\right)} = \frac{1}{1 - \frac{1}{2} \cdot \left(1 + \frac{1}{3}\right)} = 3 \ .$$

Ответ: $\Gamma_2 = 3;\;$ увеличение изображения не изменится, но оно станет мнимым и прямым

ЛИСТ ОТВЕТОВ				
№ п/п	ВАРИАНТ № 2 ВАШИ ОТВЕТЫ	Колонки для преподавателя		
1	$\upsilon_{1m} = \frac{L}{4} \sqrt{\frac{\kappa}{3m}} \; ; \; \upsilon_{2m} = \frac{L}{4} \sqrt{\frac{3\kappa}{m}}$	10		
2	$\rho = \frac{2\pi^2}{T^2} \cdot \frac{L}{g} \cdot (\rho_1 + \rho_2)$	30		
3	$A_{12} = A_{34} \cdot \frac{3vRT}{3vRT - 2A_{41}}$	15		
4	$\frac{ F_{oo} }{ F_{nocne} } = \frac{ q_1 q_2 }{r_1 r_2} \cdot \left(\frac{r_1 + r_2}{q_1 + q_2}\right)^2 = 1$	10		
5	$\frac{\left B_{I}\right }{\left B_{II}\right } = \frac{7}{4}$	20		
6	$F = L \frac{\sqrt{n}}{\left(1 + \sqrt{n}\right)^2} = 15 cm$	15		
	ИТОГО:			
Подпись преподавателя				

$$m_1^{}=3m$$
 ; $m_2^{}=m$

$$\kappa$$
 ;
$$\ell_0 = L \, ; \; \ell_1 = \frac{L}{\eta} \label{eq:lambda}$$
 where ℓ_0

$$\upsilon_{1\max}, \upsilon_{2\max}\,-\,?$$

Из ЗСИ
$$\Rightarrow \ p_{1m} = p_{2m} = p_m \ \Rightarrow \ v_{1m,2m} = \frac{p_m}{m_{1,2}}$$

Задача **1 (10)**
$$m_1 = 3m \ ; m_2 = m$$

$$m_2 = m$$

$$m_3 3 \text{C9} \Rightarrow \frac{\kappa \Delta \ell^2}{2} = \frac{p_m^2}{2m_1} + \frac{p_m^2}{2m_2} \Rightarrow p_m = \Delta \ell \sqrt{\frac{\kappa m_1 m_2}{m_1 + m_2}}$$

$$v_{1m} = |\Delta \ell| \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}} = \left(1 - \frac{1}{\eta}\right) L \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}}$$

$$\upsilon_{1m} = \left|\Delta\ell\right| \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}} = \left(1 - \frac{1}{\eta}\right) L \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}}$$

$$\eta = 2 \ ; \\ v_{2m} = \left| \Delta \ell \right| \sqrt{\frac{m_1}{m_2} \cdot \frac{\kappa}{m_1 + m_2}} = \left(1 - \frac{1}{\eta} \right) L \sqrt{\frac{m_1}{m_2} \cdot \frac{\kappa}{m_1 + m_2}} \\ v_{1 \max}, v_{2 \max} - ? \\ \textbf{Other:} \ v_{1m} = \frac{L}{4} \sqrt{\frac{\kappa}{3m}} \ ; \ v_{2m} = \frac{L}{4} \sqrt{\frac{3\kappa}{m}} \ .$$

Ответ:
$$\upsilon_{1m}=\frac{L}{4}\sqrt{\frac{\kappa}{3m}}$$
 ; $\upsilon_{2m}=\frac{L}{4}\sqrt{\frac{3\kappa}{m}}$

Задача 2 (30)

Запишем II закон Ньютона при смещении цилиндров из положения равновесия на малое

$$L_1 = L_2 = L$$

$$m_1a_1=-\rho gS\cdot x+T$$
 (1); $m_2a_2=+\rho gS\cdot x+T$ (2)

Учитывая связь цилиндров $a_1=-a_2=a$, и вычитая (2) из (1), получаем:

$$\left(m_1 + m_2\right)a = -2\rho g S \cdot x \,$$

 $\left(m_1+m_2
ight)a=-2
ho gS\cdot x$; Заменив $m_{1,2}$ в левой части на $m_{1,2}=
ho_{1,2}V=
ho_{1,2}SL$, получаем уравнение колебаний

$$a=-rac{2
ho g}{\left(
ho_1+
ho_2
ight)L}\cdot x$$
 с периодом $T=2\pi\sqrt{rac{\left(
ho_1+
ho_2
ight)L}{2
ho g}}$

$$\rho$$
 – ?

Ответ:
$$ho = rac{2\pi^2}{T^2} \cdot rac{L}{g} \cdot \left(
ho_1 +
ho_2
ight)$$

Задача 3 (15)

Процессы
$$1-2$$
 и $3-4$ изотермические $\left(\Delta\,U\,=\,0\right)\,\Rightarrow\,\,A_{\!12}\,=\,Q^+$; $A_{\!23}\,=\,Q^-$;

$$A_{34} \left(T_{34} = Const \right)$$

$$a_{ij} = 0$$

Процессы
$$1-2$$
 и $3-4$ изотермические $\left(\Delta U=0\right)\Rightarrow A_{12}=Q^+$; $A_{23}=Q^-$

$$A_{34}\left(T_{34}=Const
ight)$$
 КПД: $\eta=1-rac{T_{34}}{T_{12}}$ (1) и $\eta=1-rac{Q^-}{Q^+}=1-rac{A_{34}}{A_{12}}$ (2), получаем $A_{12}=A_{34}\cdotrac{T_{12}}{T_{34}}$ (3).

$$A_{41}\left(Q_{41}=0
ight)$$
 $Q_{41}=0\Rightarrow A_{41}=-\Delta U_{41}=rac{3}{2}
u R\left(T_{12}-T_{34}
ight)\Rightarrow T_{34}=T_{12}-rac{2A_{41}}{3
u R}$ (4) $T_{12}=T$ Из (3) и (4) получаем $A_{12}=A_{34}\cdotrac{T_{12}}{T_{12}-rac{2A_{41}}{3
u R}}$

/3 (3) и (4) получаем
$$A_{12} = A_{34} \cdot rac{T_{12}}{T_{12} - rac{2A_{41}}{2A_{21}}}$$

$$A_{12} - 3$$

Ответ:
$$A_{12} = A_{34} \cdot \frac{3 \nu R T}{3 \nu R T - 2 A_{41}}$$

Задача 4 (10)

q_1	=	+2q

$$q_1 = +2q$$

$$r_1 = R$$

$$r_2 = 2R$$

$$F_{Coulomb} = rac{1}{4\piarepsilon_0} \cdot rac{q_1 q_2}{r^2} \Rightarrow rac{\left|F_{before}
ight|}{\left|F_{after}
ight|} = \left|rac{q_1 q_2}{{q_1}' {q_2}'}
ight|$$

При соединении шариков их потенциалы выравниваются $arphi_1=arphi_2$

$$rac{{q_1}'}{C_1}=rac{{q_2}'}{C_2}$$
 , где $\ {C_{1,2}}=4\pi {arepsilon_0} r_{1,2}$ - электроемкости шариков $\ \Rightarrow \ {q_1}'\cdot r_2={q_2}'\cdot r_1$ (1)

Используя закон сохранения заряда $\,q_1^{}\,+\,q_2^{}\,=\,{q_1^{}}'\,+\,{q_2^{}}'\,$ из (1) получаем:

 ${q_1}' = rac{q_1 + q_2}{r_1 + r_2} r_1$ и ${q_2}' = rac{q_1 + q_2}{r_1 + r_2} r_2$, тогда отношение сил взаимодействия будет равно:

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} = \left|\frac{q_1q_2}{q_1'q_2'}\right| = \frac{\left|q_1q_2\right|}{r_1r_2} \cdot \left(\frac{r_1+r_2}{q_1+q_2}\right)^2.$$

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} - ?$$

Ответ:
$$\dfrac{\left|F_{before}\right|}{\left|F_{after}\right|}=\dfrac{\left|2q^2\right|}{2R^2}\cdot\left(\dfrac{3R}{3q}\right)^2=1\,.$$

$$R_{12}\,=\,R_{34}\,=\,R_{56}\,=\,1\,Ohm$$

$$R_{23}\,=\,R_{45}\,=\,R_{61}\,=\,2\,Ohm$$

Поле каждой стороны шестиугольника пропорционально силе тока в ней

Задача 5 (20) Поле каждой стор $R_{12}=R_{34}=R_{56}=1Ohm$ I способ подключения: Ток в ветви 1-2 : $I_{12}=\frac{U}{R_{12}}$

Ток в ветви
$$1-6-5-4-3-2$$
 : $I_{165432}=\frac{U}{R_{61}+R_{56}+R_{45}+R_{34}+R_{23}}$

Учитывая противоположное направление токов и количество сторон (1:5):

$$B_{I} \propto \frac{1}{R_{12}} - \frac{5}{R_{61} + R_{56} + R_{45} + R_{34} + R_{23}}$$

II способ подключения: аналогично получаем
$$B_{II} \propto \frac{5}{R_{12} + R_{61} + R_{56} + R_{45} + R_{34}} - \frac{1}{R_{23}}.$$

$$\frac{\left|B_{I}\right|}{\left|B_{II}\right|} - ?$$

$$| \textbf{OTBET:} \ \frac{\left|B_{I}\right|}{\left|B_{II}\right|} = \frac{\frac{1}{R_{12}} - \frac{5}{R_{61} + R_{56} + R_{45} + R_{34} + R_{23}}}{\frac{5}{R_{12} + R_{61} + R_{56} + R_{45} + R_{34}} - \frac{1}{R_{23}}} = \frac{\frac{1}{1} - \frac{5}{2 + 1 + 2 + 1 + 2}}{\frac{5}{1 + 2 + 1 + 2 + 1} - \frac{1}{2}} = \frac{\frac{3}{8}}{\frac{3}{14}} = \frac{7}{4}.$$

Из принципа обратимости лучей $\Rightarrow~d_1=f_2$; $~f_1=d_2~$ и $~\Gamma_1\Gamma_2=1$

$$d_1 + f_1 = L$$

$$d_2 + f_2 = L$$

 $\Gamma_1 > 1; \ \Gamma_2 < 1$

$$\frac{H_1}{H_2}=n=9$$

$$F-?$$

Учитывая, что $\frac{H_1}{H_1}=\frac{\Gamma_1}{\Gamma_1}=n$, получаем $\Gamma_1=\sqrt{n}$ и $\Gamma_2=\frac{1}{\sqrt{n}}$

$$\begin{cases} d_{2} + f_{2} = L \\ \Gamma_{1} > 1; \ \Gamma_{2} < 1 \end{cases} \Rightarrow \begin{cases} d_{1} + f_{1} = L \\ \Gamma_{1} = \frac{f_{1}}{d_{1}} = \sqrt{n} \end{cases} \Rightarrow \begin{cases} d_{1} = L \frac{1}{1 + \sqrt{n}} \\ f_{1} = L \frac{\sqrt{n}}{1 + \sqrt{n}} \end{cases} \Rightarrow F = \frac{d_{1}f_{1}}{d_{1} + f_{1}} = \frac{L \frac{1}{1 + \sqrt{n}} \cdot L \frac{\sqrt{n}}{1 + \sqrt{n}}}{L} = L \frac{\sqrt{n}}{\left(1 + \sqrt{n}\right)^{2}} .$$

$$\frac{H_1}{H_2} = n = 9$$

$$F = L \frac{\sqrt{n}}{\left(1 + \sqrt{n}\right)^2} = 80 \, cm \cdot \frac{\sqrt{9}}{\left(1 + \sqrt{9}\right)^2} = 80 \, cm \cdot \frac{3}{4^2} = \frac{240 \, cm}{16} = 15 \, cm$$

Ответ:
$$F=Lrac{\sqrt{n}}{\left(1+\sqrt{n}
ight)^2}=15\,cm$$
 .

ЛИСТ ОТВЕТОВ				
№ п/п	ВАРИАНТ № 3 ВАШИ ОТВЕТЫ	Колонки для преподавателя		
1	$\upsilon_{1m} = \left(L - L_0\right) \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}}$	10		
2	$T = 2\pi \sqrt{\frac{L}{g} \cdot \frac{4\rho_{1}\rho_{2} - \rho_{0}(\rho_{2} + \rho_{1})}{2\rho_{0}(\rho_{2} + \rho_{1} - \rho_{0})}}$	30		
3	$A_{41} = \frac{3}{2} vRT \frac{A}{A_{34}}$	15		
4	$\frac{ F_{\partial o} }{ F_{nocne} } = \frac{ q_1 q_2 }{r_1 r_2} \cdot \left(\frac{r_1 + r_2}{q_1 + q_2}\right)^2 = 9$	10		
5	$\frac{\left B_{I}\right }{\left B_{II}\right } = \frac{2}{3}$	20		
6	$\Delta x = L \frac{\Gamma_1 + \Gamma_2 - 2}{\Gamma_1 - \Gamma_2} = 30 cm$	15		
	ИТОГО:			
	Подпись преподавателя			

Задача 1 **(10**)

 m_1 ; m_2

Из ЗСИ $\Rightarrow \ p_{1m} = p_{2m} = p_m \ \Rightarrow \ v_{1m,2m} = \frac{p_m}{m_{1,2}}$ Из ЗСЭ $\Rightarrow \frac{\kappa \Delta \ell^2}{2} = \frac{p_m^2}{2m_1} + \frac{p_m^2}{2m_2} \ \Rightarrow \ p_m = \Delta \ell \sqrt{\frac{\kappa m_1 m_2}{m_1 + m_2}}$, где $\Delta \ell = L - L_0$

 $v_{1m} = \frac{p_m}{m_1} = |\Delta \ell| \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_1 + m_2}} = (L - L_0) \sqrt{\frac{m_2}{m_1} \cdot \frac{\kappa}{m_2 + m_2}}$

Ответ: $\upsilon_{1m} = \left(L-L_0\right)\sqrt{\frac{m_2}{m_1}\cdot\frac{\kappa}{m_1+m_2}}$.

Задача 2 (30)

Запишем II закон Ньютона при смещении цилиндров из положения равновесия на малое

 $\mathit{L}_{1}\,=\,\mathit{L}_{2}\,=\,\mathit{L}$

 $m_1 a_1 = -\rho_0 g S_1 \cdot x + T$ (1); $m_2 a_2 = +\rho_0 g S_2 \cdot x + T$

 $\rho_1; \rho_2$

Учитывая связь цилиндров $\,a_1^{} = -a_2^{} = a\,$, и вычитая (2) из (1), получаем:

 $\left(m_1+m_2
ight)a=ho_0 g\left(S_1+S_2
ight)\cdot x$; Заменив $m_{1,2}$ в левой части на $m_{1,2}=
ho_{1,2}V=
ho_{1,2}S_{1,2}L$,

получаем уравнение колебаний: $a = -\frac{\rho_0 g}{L} \cdot \frac{S_1 + S_2}{\rho_0 S_2 + \rho_0 S_2} x$ (3);

 $d_1\,=\,d_2\,=\frac{L}{2}$

В состоянии равновесия:

$$\begin{split} m_{1,2}g &= \rho_0 g \frac{L}{2} S_{1,2} + T \ \Rightarrow \frac{\rho_1 L S_1 g - \rho_0 \frac{L}{2} S_1 g}{\rho_2 L S_2 g - \rho_0 \frac{L}{2} S_2 g} = 1 \ \Rightarrow \frac{S_2}{S_1} = \frac{2\rho_1 - \rho_0}{2\rho_2 - \rho_0} \text{ (4)} \end{split}$$
 Из (3) и (4) следует: $a = -\frac{\rho_0 g}{L} \frac{2\rho_2 - \rho_0 + 2\rho_1 - \rho_0}{\rho_1 (2\rho_2 - \rho_0) + \rho_2 (2\rho_1 - \rho_0)} x = -\frac{2\rho_0 g}{L} \cdot \frac{\rho_2 + \rho_1 - \rho_0}{4\rho_1 \rho_2 - \rho_0 \left(\rho_2 + \rho_1\right)} x$

T-?

 ρ_0

Ответ: $T = 2\pi \sqrt{\frac{L}{g} \cdot \frac{4\rho_1 \rho_2 - \rho_0 \left(\rho_2 + \rho_1\right)}{2\rho_0 \left(\rho_2 + \rho_2\right)}}$

Задача 3 (15)

$$A_{34} \left(T_{34} = Const \right)$$

$$T_{34} = T$$

 $A_{41} - ?$

Процессы 1-2 и 3-4 изотермические $\left(\Delta U=0\right)$ \Rightarrow $A_{\!12}=Q^+$; $A_{\!23}=Q^-$;

КПД: $\eta=1-\frac{T_{34}}{T_{12}}$ (1) и $\eta=\frac{A}{Q^+}=\frac{A}{A+Q^-}=\frac{A}{A+A_{24}}$ (2), получаем $T_{12}=T_{34}\cdot\left(1+\frac{A}{A_{24}}\right)$.

 $A_{12341} \, = \, A \qquad \qquad \boxed{ Q_{41} \, = \, 0 \, \, \Rightarrow \, \, A_{41} \, = \, -\Delta \, U_{41} \, = \, \frac{3}{2} \nu R \left(T_{12} \, - \, T_{34} \, \right) = \frac{3}{2} \nu R \left(T_{34} \, \cdot \left(1 \, + \, \frac{A}{A_{34}} \right) - \, T_{34} \, \right) = \, \frac{3}{2} \nu R \, T_{34} \, \frac{A}{A_{34}} \, + \, \frac{A}{A_{34}} \, \left(1 \, + \, \frac{A}{A_{34}} \right) - \, T_{34} \, \right) = \, \frac{3}{2} \nu R \, T_{34} \, \frac{A}{A_{34}} \, + \, \frac{A}{A_{34}} \, \left(1 \, + \, \frac{A}{A_{34}} \right) - \, T_{34} \, \right) = \, \frac{3}{2} \nu R \, T_{34} \, \frac{A}{A_{34}} \, + \, \frac{A}{A_{34}} \, \left(1 \, + \, \frac{A}{A_{34}} \right) - \, T_{34} \, \right) = \, \frac{3}{2} \nu R \, T_{34} \, \frac{A}{A_{34}} \, + \, \frac{A}{A_{34}}$

Ответ: $A_{41} = \frac{3}{2} \nu R T \frac{A}{A_{--}}$

Задача 4 (10)

q_{1}	=	-q

$$q_2 = +2q$$

$$r_1 = R$$

$$r_2 = 2R$$

$$F_{Coulomb} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r^2} \Rightarrow \frac{\left|F_{before}\right|}{\left|F_{after}\right|} = \left|\frac{q_1q_2}{{q_1}'{q_2}'}\right|$$

При соединении шариков их потенциалы выравниваются $\,arphi_1 = arphi_2 \, \Rightarrow \,$

$$rac{{q_1}'}{C_1}=rac{{q_2}'}{C_2}$$
, где $C_{1,2}=4\piarepsilon_0r_{1,2}$ - электроемкости шариков $\Rightarrow~{q_1}'\cdot r_2={q_2}'\cdot r_1$ (1)

Используя закон сохранения заряда $\,q_1^{}\,+\,q_2^{}\,=\,{q_1^{}}'\,+\,{q_2^{}}'\,\,$ из (1) получаем:

 ${q_1}' = rac{q_1 + q_2}{r_1 + r_2} r_1$ и ${q_2}' = rac{q_1 + q_2}{r_1 + r_2} r_2$, тогда отношение сил взаимодействия будет равно:

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} = \left|\frac{q_1q_2}{{q_1}'{q_2}'}\right| = \frac{\left|q_1q_2\right|}{r_1r_2} \cdot \left(\frac{r_1+r_2}{q_1+q_2}\right)^2.$$

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} - ?$$

Ответ:
$$\dfrac{\left|F_{before}\right|}{\left|F_{after}\right|}=\dfrac{\left|2q^2\right|}{2R^2}\cdot\left(\dfrac{3R}{q}\right)^2=9\,.$$

Магнитное поле каждой стороны треугольника пропорционально силе тока в ней

Задача 5 (20)
$$R_{12} = R_{23} = 1 Ohm$$

$$R_{31}\,=\,2\,Ohm$$

I способ подключения: Ток в ветви 1-2 : $I_{12}=\frac{U}{R_{-1}}$

Ток в ветви
$$1-3-2$$
 : $I_{132}=\frac{U}{R_{13}+R_{32}}$

Учитывая противоположное направление токов и количество сторон (1:2):

$$B_I \propto \frac{1}{R_{12}} - \frac{2}{R_{13} + R_{32}}$$

II способ подключения: аналогично получаем $B_{II} \propto \frac{2}{R_{\rm to} + R_{\rm co}} - \frac{1}{R_{\rm to}}$

$$\frac{\left|B_{I}\right|}{\left|B_{II}\right|} - ?$$

$$| \textbf{OTBET:} \ \frac{\left|B_{I}\right|}{\left|B_{II}\right|} = \frac{\frac{1}{R_{12}} - \frac{2}{R_{13} + R_{32}}}{\frac{2}{R_{12} + R_{22}} - \frac{1}{R_{12}}} = \frac{\frac{1}{1} - \frac{2}{2+1}}{\frac{2}{1+1} - \frac{1}{2}} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}.$$

Задача 6 (15)

$$\begin{split} d_1 + f_1 &= L = 60\,cm \\ d_2 + f_2 &= L = 60\,cm \\ \Gamma_1 &= 3 \text{ ; } \Gamma_2 = \frac{1}{3}. \end{split}$$

$$\Delta x - ?$$

Из принципа обратимости лучей $\Rightarrow \ d_1=f_2$; $\ f_1=d_2 \ \Rightarrow \ egin{cases} d_1+d_2=L \\ f_1+f_2=L \end{cases}$

$$d_1+f_1=L=60\,cm$$
 учитывая, что $\Gamma_{1,2}=rac{f_{1,2}}{d_{1,2}}$, имеем $\begin{cases} d_1+d_2=L \ \Gamma_1d_1+\Gamma_2d_2=L \end{cases} \Rightarrow d_1=Lrac{1-\Gamma_2}{\Gamma_1-\Gamma_2}; d_2=Lrac{\Gamma_1-1}{\Gamma_1-\Gamma_2}$

$$\Gamma_1 = 3 \ ; \ \Gamma_2 = \frac{1}{3}.$$

$$\Delta x = \left| d_2 - d_1 \right| = L \frac{\left(\Gamma_1 - 1 \right) - \left(1 - \Gamma_2 \right)}{\Gamma_1 - \Gamma_2} = L \frac{\Gamma_1 + \Gamma_2 - 2}{\Gamma_1 - \Gamma_2} = 60 \ cm \frac{3 + \frac{1}{3} - 2}{3 - \frac{1}{3}} = 30 \ cm$$

$$\Delta x = \left| d_2 - d_1 \right|$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

$$\Delta x = 2 \left| \frac{1}{3} \right| = 2 \ cm$$

Ответ:
$$\Delta x = L \frac{\Gamma_1 + \Gamma_2 - 2}{\Gamma_2 - \Gamma_2} = 30 \, cm$$

ЛИСТ ОТВЕТОВ				
№ п/п	ВАРИАНТ № 4 ВАШИ ОТВЕТЫ	Колонки для преподавателя		
1	$L_{\text{max}} = L + \upsilon_0 \sqrt{\frac{2m}{\kappa}}$	10		
2	$\omega = \sqrt{\frac{\mu g}{A} \cdot \left(1 + \frac{M}{m}\right)}, \left(f = \frac{1}{2\pi} \sqrt{\frac{\mu g}{A} \cdot \frac{M + m}{m}}\right)$	20		
3	$\Delta m = \frac{m}{2} \cdot \frac{\xi_1 - \xi_2}{\xi_1 + \xi_2} = \frac{3}{10} m$	10		
4	$\frac{ F_{\partial o} }{ F_{nocne} } = \frac{ q_1 q_2 }{r_1 r_2} \cdot \left(\frac{r_1 + r_2}{q_1 + q_2}\right)^2 = 2$	15		
5	$P_1 = \frac{9}{16}P = 5.625 Bm$	15		
6	$\Delta x = \left 1 - \frac{1}{\Gamma_1 \Gamma_2} \right \Delta \ell = 5\Delta \ell$	30		
	ИТОГО:			
Подпись преподавателя				

Задача 1 (10)

$$\begin{array}{l} m_1 \, = \, m \; ; \\ \\ m_2 \, = \, m \\ \\ v_{01} \, = \, v_0 \; ; \\ \\ v_{02} \, = \, -v_0 \end{array}$$

Из ЗСИ
$$\Rightarrow~p_{1
m min}=-p_{2
m min}=p_{
m min}~\Rightarrow$$
 т.к. $m_1=m_2$, то $~v_{1,2
m min}=0$

Из 3СЭ
$$\Rightarrow \frac{\kappa\Delta\ell^2}{2}=\frac{mv_0^2}{2}+\frac{mv_0^2}{2}$$
 $\Rightarrow \Delta\ell=v_0\sqrt{\frac{2m}{\kappa}}$, где $\Delta\ell=L-L_0$ $L_{\max}=L+\Delta\ell$

$$L_{\text{max}} = L + \Delta \ell$$

Ответ:
$$L_{\mathrm{max}} \, = L + v_0 \sqrt{\frac{2m}{\kappa}}$$
 .

Задача 2 (20)

Условие начала проскальзывания ящика - превышение упругой силой значения максимальной силы трения покоя:

$$M$$
 , m
$$2\kappa A=\mu N=\mu ig(m+Mig)g\ \Rightarrow$$
 коэффициент жесткости $\kappa=rac{\mu ig(m+Mig)g}{2A}$

Собственная частота колебаний данного пружинного маятника:

$$\omega = \sqrt{\frac{2\kappa}{m}} = \sqrt{\frac{\mu(m+M)g}{mA}};$$

Otbet:
$$\omega=\sqrt{\frac{\mu g}{A}\cdot\left(1+\frac{M}{m}\right)}$$
 , $\left(f=\frac{\omega}{2\pi}=\frac{1}{2\pi}\sqrt{\frac{\mu g}{A}\cdot\frac{M+m}{m}}\right)$

Задача 3 (10)

После изменения температур в состоянии механического равновесия должны быть одинаковы давления в сосудах $P_1=P_2$;

$$T_{01}=T_{02}=T$$
 Поскольку $PV=
u RT=rac{m}{\mu}RT$ $\Rightarrow \left(rac{m}{2}-\Delta m
ight)T_1=\left(rac{m}{2}+\Delta m
ight)T_2$

$$\left(\frac{m}{2} - \Delta m\right)\xi_1 = \left(\frac{m}{2} + \Delta m\right)\xi_2 \ \Rightarrow \ \Delta m = \frac{m}{2} \cdot \frac{\xi_1 - \xi_2}{\xi_1 + \xi_2}$$

$$m = \frac{m}{2} + \frac{m}{2}$$

$$T_1 = \xi_1 T; \, \xi_1 = 2$$

$$T_2 = \xi_2 T; \, \xi_2 = \frac{1}{2}$$

$$\left(\frac{m}{2} - \Delta m\right) \xi_1 = \left(\frac{m}{2} + \Delta m\right) \xi_2 \Rightarrow \Delta m = \frac{m}{2} \cdot \frac{\xi_1 - \xi_2}{\xi_1 + \xi_2}$$

$$\Delta m = \frac{m}{2} \cdot \frac{\xi_1 - \xi_2}{\xi_1 + \xi_2} = \frac{m}{2} \cdot \frac{2 - \frac{1}{2}}{2 + \frac{1}{2}} = \frac{m}{2} \cdot \frac{3}{5} = \frac{3}{10} m$$

Ответ:
$$\Delta m = \frac{m}{2} \cdot \frac{\xi_1 - \xi_2}{\xi_1 + \xi_2} = \frac{3}{10} m$$

Задача 4 (15)

$$F_{Coulomb} = rac{1}{4\piarepsilon_0} \cdot rac{q_1q_2}{r^2} \ \Rightarrow \ rac{\left|F_{before}
ight|}{\left|F_{after}
ight|} = \left|rac{q_1q_2}{q_1'q_2'}
ight|$$

$$q_1 = +q$$

 $q_2 = -4q$

 $r_2 = 2R$

При соединении шариков их потенциалы выравниваются $arphi_1=arphi_2 \, \Rightarrow$

 $rac{{q_1}'}{C_1}=rac{{q_2}'}{C_2}$, где $C_{1,2}=4\piarepsilon_0 r_{1,2}$ - электроемкости шариков $\Rightarrow {q_1}'\cdot r_2={q_2}'\cdot r_1$ (1)

Используя закон сохранения заряда $\,q_1^{}+q_2^{}={q_1^{}}'+{q_2^{}}'\,$ из (1) получаем:

 ${q_1}' = rac{q_1 + q_2}{r_1 + r_2} r_1$ и ${q_2}' = rac{q_1 + q_2}{r_2 + r_2} r_2$, тогда отношение сил взаимодействия будет равно:

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} = \left|\frac{q_1q_2}{q_1'q_2'}\right| = \frac{\left|q_1q_2\right|}{r_1r_2} \cdot \left(\frac{r_1+r_2}{q_1+q_2}\right)^2.$$

$$\frac{\left|F_{before}\right|}{\left|F_{after}\right|} - ?$$

Ответ: $rac{\left|F_{before}
ight|}{\left|F_{a_{a}}
ight|}=rac{\left|4q^{2}
ight|}{2R^{2}}\cdot\left(rac{3R}{-3q}
ight)^{2}=2$.

Задача 5 (15)

При параллельном соединении источников: $P_{2p} = I^2 R = \left| \frac{\mathbf{E}}{R + r/2} \right| \, R$

 $P_{2s} = P$

 $P_{2v} = P$

P = 10W

При последовательном соединении источников: $P_{2s} = I^2 R = \left(\frac{2 \mathrm{E}}{R + 2r}\right)^2 R$

 $\Rightarrow \left(rac{\mathrm{E}}{R+r/2}
ight)^{\!\!\!2} R = \left(rac{2\mathrm{E}}{R+2r}
ight)^{\!\!\!2} R \ \Rightarrow \ R=r$, и тогда $P = \left(rac{2\mathrm{E}}{R+2R}
ight)^{\!\!\!2} R = rac{4}{9} \cdot rac{\mathrm{E}^2}{R}$ (1)

При использовании одного источника: $P_1 = I^2 R = \left(\frac{\mathrm{E}}{R+r}\right)^2 R = \frac{1}{4} \cdot \frac{\mathrm{E}^2}{R}$ (2)

Сопоставляя (1) и (2) имеем $P_1 = \frac{1}{4} \cdot \frac{E^2}{P} = \frac{1}{4} \cdot \frac{9}{4} \cdot P = \frac{9}{16} P = \frac{9}{16} 10W = 5.625W$.

 $P_1 - ?$

Ответ: $P_1 = \frac{9}{16}P = 5.625W$.

Задача 6 (30)

Перемещение предмета Δx складывается из перемещения его относительно линзы $\Delta d=d_1-d_2$ и линзы относительно экрана $\Delta f=f_1-f_2$: $\Delta x=\Delta f+\Delta d$.

$$\Gamma_1=rac{1}{2}$$
 ; $\Gamma_2=rac{1}{3}$ $\Delta f=\Delta \ell$.

Учитывая, что $\Gamma_{1,2}=rac{f_{1,2}}{d_{1,2}}$, имеем $f_1-f_2=\Delta\ell$ \Rightarrow $\Gamma_1d_1-\Gamma_2d_2=\Delta\ell$ (1)

Из уравнения тонкой линзы $\frac{1}{f_1} + \frac{1}{d_1} = \frac{1}{f_2} + \frac{1}{d_2} \implies \frac{1}{d_1} \left[1 + \frac{1}{\Gamma_1} \right] = \frac{1}{d_2} \left[1 + \frac{1}{\Gamma_2} \right]$ (2)

Решая совместно (1) и (2) получаем $d_{1,2}=rac{1+\Gamma_{1,2}^{-1}}{\Gamma_1-\Gamma_2}$, причем $d_2>d_1$, т.е. перемещение

относительно линзы направлено от нее $\Delta d=d_1-d_2=rac{\Gamma_1^{-1}-\Gamma_2^{-1}}{\Gamma_1-\Gamma_2}\Delta\ell=-rac{\Delta\ell}{\Gamma_1\Gamma_2}$

 $\Delta x - ?$

Ответ: $\Delta x = \left| 1 - \frac{1}{\Gamma \Gamma} \right| \Delta \ell = 5 \Delta \ell$.