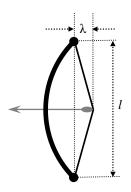
Заочный тур олимпиады $\Phi\Phi$ 2014-2015гг. 10класс. Везде принять $g=10\text{m/c}^2$.

ЗАДАЧА № 1

Космический корабль движется без ускорения в открытом космосе вдали от других планет. В некоторый момент экипаж обнаруживает на расстоянии l от себя объект, относительно которого скорость корабля равна V и направлена перпендикулярно направлению на объект. Экипаж принимает решение как можно быстрее сблизиться с объектом, для чего немедленно приступает к маневру с максимально возможным (по модулю) ускорением a. Чему равно минимальное время сближения, если объект продолжает двигаться без ускорения? Релятивистскими эффектами пренебречь.

ЗАДАЧА № 2

Глобус радиусом R=1,5 метра установлен так, что его ось занимает вертикальное положение. На его северном полюсе устанавливают легкий упругий шарик, после чего по нему наносят, как в бильярде, горизонтальный удар тяжелым кием. Какой должна быть скорость кия (V_0) при ударе, чтобы шарик отделился от глобуса на параллели 60° северной широты? Считать удар центральным и абсолютно упругим, массу кия M>>m массы шарика, $g=10\,\mathrm{m/c^2}$. Трением и сопротивлением воздуха пренебречь.

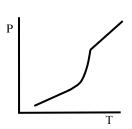

ЗАДАЧА № 3

Кубик со стороной a, изготовленный из материала плотности ρ , лежит на очень длинной доске. Вдоль доски дует ветер, оказывающий давление p на любую вертикальную поверхность. Однако сила давления ветра на кубик $(F=pa^2)$ намного меньше силы трения кубика о доску, коэффициент которого равен μ . (В некоторый момент t_0 =0 доска, как целое, начинает совершать горизонтальные гармонические колебания вдоль своей длины с достаточно большой частотой ω так, что скорость ее относительно земли изменяется во времени по закону $V(t) = V_0 \sin(\omega t)$. Определить установившуюся среднюю скорость кубика <v> через достаточно большой промежуток времени после начала колебаний доски (когда $\omega t>> 2\pi$). Длину доски считать неограниченной.

ЗАДАЧА № 4

Расстояние между концами упругой дуги лука (без тетивы) несколько превосходит, естественно, длину самой тетивы, которая равна l. Она представляет собой легкий нерастяжимой трос с петлями на обоих концах. Тетиву натягивают на лук, сближая его концы на это самое расстояние l, для чего требуется усилие $F_{\rm o}$. После этого лук готов к выстрелу.

Стрелу массой m упирают задним концом в середину натянутой тетивы, оттягивают ее (см. рисунок) на расстояние λ ($\lambda << l$) и отпускают. С какой скоростью ($V_{\rm o}$) стрела вылетит из лука? Какова длительность выстрела τ ? Считать, что натяжение тетивы ($F_{\rm o}$) в процессе выстрела остается неизменным. Ответ дать в общем виде и отдельно для конкретного случая l=1м, $\lambda=10$ см, m=25г, $F_{\rm o}=1000$ H.

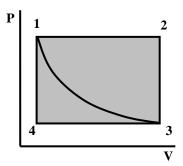

Задача № 5

Плоская плита наклонена под углом α к горизонту. К ней сверху прижат шарик. В некоторый момент плиту начали опускать вертикально вниз с постоянной скоростью v, а шарик продолжали удерживать на месте. Когда расстояние между шариком и плитой (по нормали) составило l, шарик отпустили, и он начал свободно падать. Определить время (T) между двумя последовательными

абсолютно упругими ударами шарика о плиту. Размеры плиты и пространство под плитой считать неограниченными.

ЗАДАЧА № 6

В сосуде находится смесь воздуха, воды и водяных паров. Зависимость давления воздушно-паровой смеси от температуры приведена на диаграмме. Объем смеси в процессе измерений не менялся. По графику необходимо определить, каково в данном сосуде соотношение $(m_{\rm B}/m_{\rm H2O})$ между массой воздуха $(m_{\rm B})$ и общей массой воды во всех агрегатных состояниях $(m_{\rm H2O})$. Укажите алгоритм получения ответа. Считайте, что все газы подчиняются уравнению Клапейрона-Менделеева.



Задача № 7

В трех жестких герметичных сосудах находятся разные газы: в первом – гелий (He), во втором – азот (N_2), а в третьем – четыреххлористый углерод (CCl_4). Эти сосуды роняют в шахту глубиной $h=600\,\mathrm{m}$. Попав в песок на дне шахты, упавшие сосуды быстро останавливаются. Найти изменение температуры газа в каждом из сосудов (ΔT_1 , ΔT_2 и ΔT_3) стазу после удара о дно, считая, что сосуды не продеформировались и не успели начать теплообмен с находящимися в них газами.

ЗАДАЧА № 8

Рабочим телом тепловой машины является одноатомный газ. Машина может работать по двум различным циклам: «1-2-3-1» и «1-3-4-1». Каждый цикл состоит из трех стандартных изопроцессов, которые представлены на PV-диаграмме (см. рисунок). Граничные точки этих процессов обозначены цифрами 1, 2, 3 и 4. Кривая «1-3» соответствует изотермическому процессу, в котором крайние значения объемов отличаются в k раз. В цикле «1-2-3-1» КПД машины равен η_1 . Определить КПД машины (η_2) в цикле «1-3-4-1».

ЗАДАЧА № 9

Протон (p) и α -частица (ядро изотопа 4He) издалека летят навстречу друг другу по прямой («лоб в лоб») с начальными скоростями V_p и V_α , соответственно. Каким будет наименьшее расстояние (l_{\min}) меджу ними? Какими будут их скорости $(v_p$ и $v_\alpha)$, когда они снова окажутся на большом расстоянии друг от друга? Все необходимые параметры считать известными. Принять массу протона равной массе нейтрона. Дефектом массы пренебречь.