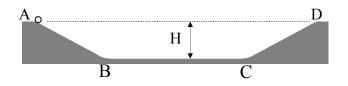


САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОЛИМПИАДА ШКОЛЬНИКОВ САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Общеобразовательный предмет/ комплекс предметов: <u>Физика</u> 2011-2012 учебный год


Вариант I (11 кл).

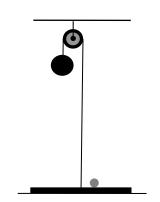
№1. На полу лежит тонкий круглый диск массой m_1 =1,5 кг. На диске лежит маленький легкий шарик. К центру диска прикреплен трос, который перекинут через блок, закрепленный на потолке. К другому концу троса привязан тяжелый шар массой m_2 =3,5 кг (см. рисунок). Каким будет натяжение троса (Т) после того, как шар отпустят? Через какое время (t_0) после начала движения шар ударится о диск, если исходное расстояние между ними составляло h = 256 см? На какую максимальную высоту над полом (h*) подлетит маленький шарик?

№2. Бетонный желоб глубиной Н имеет в сечении вид равнобедренной трапеции с отлогими (не очень крутыми) скатами АВ и СD и широким дном ВС >> Н (см. рис). Между скатами и дном обеспечены плавные переходы. Скат СD покрыт льдом и является гладкой поверхностью. На остальных двух поверхностях коэффициент трения достаточно высок.

Тонкий обруч радиусом r (r << H) устанавливают на краю желоба в точке A и отпускают. На какую высоту от дна (h_1) поднимется обруч по склону CD? На какую высоту (h_2) поднимется обруч по склону AB при обратном движении? Трением качения и сопротивлением воздуха пренебречь.

- **№3.** На поверхности Луны телу сообщили скорость V_O , которая на 0,5% превосходит лунную вторую космическую скорость V_{II} . Во сколько раз скорость тела вдали от Луны (V_{∞}) будет меньше V_{II} ?
- **№4.** В цилиндре под свободным поршнем находится V_o = 2 литра сухого воздуха при температуре T_o =25°С и давлении P_o =2 атмосферы. В этот объем впрыскивают m=4 Γ воды. Каким станет объем смеси при ее изобарном нагреве до температуры T_I =100°С? Считать, что воздух и водяные пары описываются уравнением Клапейрона-Менделеева.
- №5. Цикл тепловой машины на одноатомном газе имеет на PV-диаграмме вид трапеции с вершинами в точках ($P_1;V_1$), ($6P_1;V_1$), ($6P_1;3V_1$) и ($3P_1;3V_1$). Найти КПД (η) тепловой машины. Изобразить цикл на всех трех (PV, PT и VT) диаграммах.
- №6. Один кипятильник, включенный в стандартную сеть, доводит воду в чайнике до кипения за время $T_1 = 7$ минут. Второй кипятильник делает то же самое за время $T_2 = 3$ минуты. Какое время $(T_{//})$ займет кипячение, если в чайник погрузить сразу оба кипятильника и включить их в сеть параллельно? Каков будет ответ (T_{--}) при последовательном включении кипятильников в сеть? Сопротивления кипятильников считать постоянными, теплопотерями пренебречь.
- №7. Две маленькие проводящие сферические бусинки массами m_1 и m_2 могут скользить без трения по горизонтальной непроводящей гладкой спице неограниченного размера. Бусинкам сообщили одноименные заряды q_1 и, соответственно, q_2 и развели на значительное расстояние друг от друга. Затем их одновременно отпустили, причем первой бусинке в этот момент импульсом сообщили скорость V_0 в направлении второй. Определить минимальное расстояние (l_{min}), на которое сблизятся

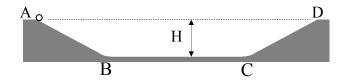
- бусинки в процессе своего движения? Найти предельные значения скоростей бусинок (V_1 и, соответственно, V_2) через большой промежуток времени после их максимального сближения.
- №8. Из металлической проволоки сечением S изготовлена жесткая рамка в виде правильного треугольника со стороной a. Она лежит на столе в вертикальном внешнем магнитном поле индукции B, направленном вниз. По ней течет ток I (направленный против часовой стрелки, если смотреть на рамку снизу). Пренебрегая электромагнитным взаимодействием сторон рамки друг с другом, определить механическое напряжение, испытываемое каждой из сторон во внешнем магнитном поле. Каким оно будет: растягивающим или сжимающим?
- №9. Оптическая схема собирающей линзы представлена на координатной плоскости ХУ. Главная оптическая ось совпадает с осью абсцисс, а ось ординат лежит в плоскости линзы. Главные фокусы находятся в точках (-3;0) и (3;0). Концы прямого отрезка имеют координаты (-4;1) и (-2;1). Построить изображение этого отрезка и привести его аналитическую формулу вида y = f(x) с указанием области определения.



САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОЛИМПИАДА ШКОЛЬНИКОВ САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Общеобразовательный предмет/ комплекс предметов: <u>Физика</u> 2011-2012 учебный год

Вариант II (11 кл).


№1. На полу лежит тонкий круглый диск массой m_1 =0,4 кг. На диске лежит маленький легкий шарик. К центру диска прикреплен трос, который перекинут через блок, закрепленный на потолке. К другому концу троса привязан тяжелый шар массой m_2 =0,6 кг (см. рисунок). Каким будет натяжение троса (Т) после того, как шар отпустят? Через какое время (t_0) после начала движения шар ударится о диск, если исходное расстояние между ними составляло h = 288 см? На какую максимальную высоту над полом (h*) подлетит маленький шарик?

№2. Бетонный желоб глубиной Н имеет в сечении вид равнобедренной трапеции с отлогими (не очень крутыми) скатами АВ и СО и широким дном ВС>>Н (см. рис). Между скатами и дном обеспечены плавные переходы. Скат АВ покрыт дьдом и являе

обеспечены плавные переходы. Скат АВ покрыт льдом и является гладкой поверхностью. На остальных двух поверхностях коэффициент трения достаточно высок.

Тонкий обруч радиусом r (r<<H) устанавливают на краю желоба в точке A и отпускают. На какую высоту от дна (h_1) поднимется обруч по склону CD? На какую высоту (h_2) поднимется обруч по склону AB при обратном движении? Трением качения и сопротивлением воздуха пренебречь.

- №3. На поверхности Марса телу сообщили скорость V_o , которая на 2% превосходит марсианскую вторую космическую скорость $V_{\rm II}$. Во сколько раз скорость тела вдали от Марса (V_{∞}) будет меньше $V_{\rm II}$?
- **№4.** В цилиндре под свободным поршнем находится V_o = 1,5 литра сухого воздуха при температуре T_o =7°C и давлении P_o =3 атмосферы. В этот объем впрыскивают m=3г воды. Каким станет объем смеси при ее изобарном нагреве до температуры T_1 =100°C? Считать, что воздух и водяные пары описываются уравнением Клапейрона-Менделеева.
- **№5.** Цикл тепловой машины на одноатомном газе имеет на PV-диаграмме вид трапеции с вершинами в точках ($P_1;V_1$), ($3P_1;3V_1$), ($3P_1;5V_1$) и ($P_1;5V_1$). Найти КПД (η) тепловой машины. Изобразить цикл на всех трех (PV, PT и VT) диаграммах.
- №6. Один кипятильник, включенный в стандартную сеть, доводит воду в стакане до кипения за время $T_1 = 3$ минуты. Второй кипятильник делает то же самое за время $T_2 = 2$ минуты. Какое время $(T_{//})$ займет кипячение, если в стакан погрузить сразу оба кипятильника и включить их в сеть параллельно? Каков будет ответ (T_{--}) при последовательном включении кипятильников в сеть? Сопротивления кипятильников считать постоянными, теплопотерями пренебречь.
- №7. Две маленькие проводящие сферические бусинки массами m_1 и m_2 могут скользить без трения по горизонтальной непроводящей гладкой спице неограниченного размера. Бусинкам сообщили одноименные заряды q_1 и q_2 , соответственно, и развели на значительное расстояние друг от друга. Затем их одновременно отпустили, причем второй бусинке в этот момент импульсом сообщили ско-

рость V_0 в направлении первой. Определить минимальное расстояние (l_{\min}), на которое сблизятся бусинки в процессе своего движения? Найти предельные значения скоростей бусинок (V_1 и, соответственно, V_2) через большой промежуток времени после их максимального сближения.

- №8. Из металлической проволоки сечением S изготовлена жесткая рамка в виде правильного шестиугольника со стороной a. Она лежит на столе в вертикальном внешнем магнитном поле индукции B, направленном вверх. По ней течет ток I (направленный против часовой стрелки, если смотреть на рамку снизу). Пренебрегая электромагнитным взаимодействием сторон рамки друг с другом, определить механическое напряжение, испытываемое каждой из сторон во внешнем магнитном поле. Каким оно будет: растягивающим или сжимающим?
- №9. Оптическая схема собирающей линзы представлена на координатной плоскости XУ. Главная оптическая ось совпадает с осью абсцисс, а ось ординат лежит в плоскости линзы. Главные фокусы находятся в точках (-4;0) и (4;0). Концы прямого отрезка имеют координаты (-6;2) и (-2;2). Построить изображение этого отрезка и привести его аналитическую формулу вида y = f(x) с указанием области определения.