

Всероссийская олимпиада школьников «Миссия выполнима. Твое призвание-финансист!»

ЗАКЛЮЧИТЕЬНЫЙ (ОЧНЫЙ) ЭТАП

Математика 10 класс, 2017/2018 учебный год

Задание 1. (10 баллов)

Пять различных по весу гирь, каждая из которых весит целое число килограмм, были взвешены всевозможными группами по три гири. В результате получили следующие веса (в килограммах) десяти взвешенных групп: 10, 14, 15, 16, 17, 17, 18, 21, 22, 24. Найдите веса этих пяти гирь.

Задание 2. (10 баллов)

Даны 2018 чисел $x_1, x_2, ..., x_{2018}$, каждое из которых равно либо $2 - \sqrt{3}$ либо $2 + \sqrt{3}$. Найдите наибольшее возможное значение суммы $x_1x_2 + x_3x_4 + x_5x_6 + ... + x_{2017}x_{2018}$, если известно, что она является целым числом.

Задание 3. (12 баллов)

Найдите наименьшее значение функции f(x) = |x| + |x+1| + K + |x+2022|.

Задача 4. (12 баллов)

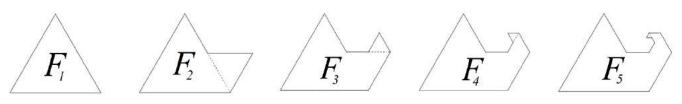
Биссектрисы углов A, B и C треугольника ABC пересекаются с описанной около этого треугольника окружностью в точках A_1 , B_1 и C_1 , соответственно. Найдите расстояния между точкой A_1 и центром вписанной в треугольник ABC окружности, если известно, что $\angle A_1B_1C_1=50^\circ$, $\angle A_1C_1B_1=70^\circ$, $B_1C_1=\sqrt{3}$.

Задание 5. (12 баллов)

Докажите, что для любых действительных чисел a,b,c таких, что 0 < a,b,c < 1, выполнено следующее неравенство $\sqrt{abc} + \sqrt{(1-a)(1-b)(1-c)} < 1$.

Задание 6. (14 баллов)

Дана бесконечная последовательность многоугольников F_1, F_2, F_3, F_4 К Фигура F_1 — это равносторонний треугольник со стороной 1. Пятиугольник F_2 получается из треугольника F_1 построением на его стороне равностороннего треугольника со стороной $\frac{1}{2}$, как показано на рисунке. Семиугольник F_3 получается из пятиугольника F_2 построением на его стороне длины $\frac{1}{2}$ равностороннего треугольника со стороной $\frac{1}{2^2} = \frac{1}{4}$ и так далее. На каждом шаге строится треугольник, сторона которого в два раза меньше стороны треугольника, построенного на предыдущем шаге.



Докажите, что периметр каждой из рассматриваемых фигур не превышает 4.

Задание 7. (14 баллов)

Иван и Петр играют в следующую игру. Из кучки, которая содержит 2018 камней, они по очереди берут некоторое количество камней. Если перед ходом в кучке имеется N камней, то игрок может взять k камней, только если k является делителем числа N. Проигрывает тот игрок, который возьмет последний камень. Кто из игроков имеет выигрышную стратегию, если первым берет камни Иван?

Задача 8. (16 баллов)

Сколько решений в целых числах имеет уравнение $x_1^4 + x_2^4 + \dots + x_{14}^4 = 2031$.