2.13. Отборочный тур олимпиады «Росатом», 9 класс

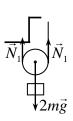
- **1.** Человек первую треть полного времени движения прошел по лесной дороге со скоростью v=1 км/ч. Вторую треть полного времени движения человек шел по шоссе со скоростью 3v. Оставшейся участок, длина которого равна трети всего пути, человек прошел со скоростью v_1 . Найти v_1 .
- **2.** 2014 одинаковых блоков массой *т* каждый подвешены с помощью невесомых нитей так, как показаны на рисунке. Найти силу натяжения нити, удерживающей 2014 блок. Масса груза равна массе блока.

- **3.** Имеется кусок провода с сопротивлением R = 1000 Ом. Из провода изготавливают нагреватель, рассчитанный на работу в бытовой электрической сети с напряжением $U = 220\,$ В. Нагреватель какой максимальной мощности можно изготовить, если максимальный ток через провод $I = 1\,$ А. Напряжение сети не зависит от нагрузки. При изготовлении нагревателя необходимо использовать весь провод без остатка.
- **4.** Веревку длиной l = 8R/5 прикрепляют к двум шайбам радиуса R и тянут шайбы в горизонтальном направлении (см. рисунок, вид сверху). Найти силу, с которой шайбы действуют друг на друга.
- **5.** От пристани отходит корабль. Через некоторое время вслед за кораблем с пристани вылетает муха. Долетев до корабля, муха разворачивается, летит обратно и возвращается к пристани через время $t_1 = 8$ мин после старта. Сразу после этого муха повторяет движение от пристани до корабля и обратно, но затрачивает на него время $t_2 = 10$ мин. Какое время затратит муха на третье

Ответы и решения

1. Пусть полный путь, пройденный человеком, равен S, затраченное время - t. Тогда из соотношений, связывающих расстояние, время и скорость для первого и второго этапа движения имеем

$$v\frac{t}{3} + 3v\frac{t}{3} = \frac{2S}{3} \tag{1}$$


С другой стороны

$$v_1 = \frac{S/3}{t/3}$$

Поэтому из (1) находим

$$v_1 = 2v = 2 \text{ KM/H}$$

2. На первый блок действуют: сила тяжести $m\vec{g}$ и сила натяжения нижней нити, равная $m\vec{g}$ (направлены вниз), две силы натяжения охватывающей его нити \vec{N}_1 , направленые вверх (см. рисунок). Отсюда следует, что сила натяжения нити, охватывающей нижний блок, равна

$$N_1 = mg$$

На второй блок действует сила тяжести $m\vec{g}$ и сила натяжения первой нити, равная $m\vec{g}$ (направлены вниз), две силы натяжения охватывающей его нити \vec{N}_2 , направленые вверх (см. рисунок). Отсюда следует, что сила натяжения нити, охватывающей нижний блок, равна

$$N_2 = mg$$

Продолжая рассуждения дальше, найдем, что силы натяжения всех нитей и, в том числе, нити, охватывающей 2014 блок, равны

$$N_{2014} = mg$$

3. Поскольку напряжение сети не зависит от нагрузки, из закона Джоуля-Ленца

$$P = \frac{U^2}{r}$$

Заключаем, что мощность нагревателя будет максимальной при условии максимального количества соединений полюсов сети проволоками с минимальным сопротивлением. Но сопротивление каждой проволоки нельзя сделать меньше, чем $r = 220\,$ Ом, поскольку ток через проволоку не должен превосходить 1 А. Поэтому можно разрезать проволоку на 4 части, три с сопротивлением $r = 220\,$ Ом; останется кусок с сопротивлением $r_1 = 120\,$ Ом. По условию этот кусок нельзя выбросить, но из него можно сделать проводник с сопротивлением, практически равным нулю (разрезав его на множество маленьких участков и соединить их параллельно), и включить последовательно любому из участков. Поэтому максимальная мощность нагревателя определяется соотношением

$$P_{\text{max}} = 4 \frac{U^2}{r} = 880 \text{ BT}$$

4. На каждую шайбу действует сила натяжения нити \vec{T} и сила реакции со стороны второй шайбы \vec{N} (см. рисунок), причем сумма проекций этих сил на ось y равна нулю. Поэтому

$$N = T \sin \alpha$$

где α - угол между нитью и линией действия силы \vec{F} . С другой стороны, сила натяжения нити возникает из-за того, что нить тянут с силой \vec{F} . Поэтому

$$2T\cos\alpha = F$$
 и $N = \frac{1}{2}F$ tg α

Найдем $\operatorname{tg} \alpha$. Очевидно

$$tg \alpha = \frac{R}{\sqrt{(4/5R + R)^2 - R^2}} = \frac{5}{\sqrt{56}}$$

Отсюда получаем

$$N = \frac{5}{2\sqrt{56}} F$$

5. Пусть скорость корабля v, скорость мухи - u, расстояние от причала до корабля в момент вылета мухи равно l. Тогда время движения мухи до корабля и назад равно

$$t_1 = \frac{2l}{u - v} \tag{1}$$

а расстояние от корабля до причала равно

$$l_1 = l + vt_1 = \frac{l(u+v)}{u-v}$$

Это значит, что время, затраченное мухой на второе путешествие, можно найти по формуле (1), в которой нужно сделать замену $l \to l_1$

$$t_2 = \frac{2l_1}{u - v} = \frac{2l(u + v)}{(u - v)^2} = t_1 \frac{(u + v)}{(u - v)}$$
 (2)

В этот момент между кораблем и пристанью будет расстояние

$$l_2 = l_1 + vt_2 = \frac{l(u+v)^2}{(u-v)^2}$$

А это значит, что время, которое затратит муха на третье путешествие, можно найти из (1) с помощью замены $l \to l_2$

$$t_3 = \frac{2l_2}{u - v} = \frac{2l(u + v)^2}{(u - v)^3} = t_1 \frac{(u + v)^2}{(u - v)^2}$$
(3)

Из (2), (3) получаем

$$t_3 = \frac{t_2^2}{t_1} = 12,5$$
 мин.