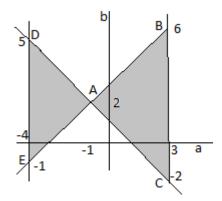
Ответы и решения

1. Otbet: $S_D = 25$

Решение

Условие пересечения: $(a+b-1)(b-a-3) \le 0$

На рис изображена область D



Уравнение прямой BE: b = a + 3, уравнение прямой DC: b = 1 - a. Координаты точки A(-1;2).

Длины сторон BC=8, DE=6. Высота треугольника ADE равна $h_{\scriptscriptstyle A}=3$, высота треугольника ABC

равна
$$H_{\scriptscriptstyle A} = 4$$
 . Площадь области $S_{\scriptscriptstyle D} = \frac{1}{2} (6 \cdot 3 + 8 \cdot 4) = 25$

2. Other:
$$n = 6k + 1$$
, $n = 2 + 6k$, $n = 5 + 6k$, $k \ge 0$, $k \in \mathbb{Z}$

Решение

Заметим, что $a_{n+6}=a_n$ для всех n . В таблице указаны значения a_n и a_{n+1} для n=1,2,...,6 .

n	1	2	3	4	5	6
a_n	1	2	3	2	1	6
a_{n+1}	2	3	2	1	6	1

Случай 1. n = 1

Уравнение
$$x^2 - x - 2 = 0 \rightarrow x_1 = 1, x_2 = -2$$

Случай 2. n = 2

Уравнение
$$x^2 - 2x - 3 = 0 \rightarrow x_1 = -1, x_2 = 3$$

Случай 3. n = 3

Уравнение
$$x^2 - 3x - 2 = 0 \rightarrow D = 17 \rightarrow$$
 целых корней нет

Случай 4. n = 4

Уравнение
$$x^2 - 2x - 1 = 0 \rightarrow D = 8 \rightarrow$$
 целых корней нет

Случай 5. n = 5

Уравнение $x^2 - x - 6 = 0 \rightarrow x_1 = -2, x_2 = 3$

Случай 6. n = 6

Уравнение $x^2 - 6x - 1 = 0 \to D = 40 \to$ целых корней нет

3. Other: a = b = c = 2

Решение

Коэффициенты $(r_n; r_{n+1}, r_{n+2})$ при неизвестных a, b, c при любых n принимают только 3 различных значения (0;1;2), (1;2;0), (2;0;1) - циклические перестановки. Тогда a, b, c являются решениями системы линейных уравнений:

$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 6 \end{pmatrix}$$

Циклическая перестановка решений a,b,c приводит к той же системе, поэтому a=b=c . Подставляя их в первое уравнение, получим a=b=c=2 .

4. Other:
$$S = (2^9 - 1) \cdot \frac{(3^4 - 1)}{2} \cdot \frac{(5^7 - 1)}{4}$$

Решение

Сумма делителей вида $2^0 \cdot 3^0 \cdot 5^p$, p = 1,...6 равна $1 + 5 + 5^2 + ... + 5^6 = \frac{5^7 - 1}{4} = s_1$.

Сумма делителей вида $2^0 \cdot 3^1 \cdot 5^p$, p = 1, 2, ..., 6 равна $3 \cdot \frac{5^7 - 1}{4} = 3s_1$, сумма делителей вида

$$2^0 \cdot 3^2 \cdot 5^p$$
, $p = 1, 2, ..., 6$ равна $3^2 \cdot \frac{5^7 - 1}{4} = 3^2 s_1$ и т.д., сумма делителей вида

$$2^0 \cdot 3^q \cdot 5^p$$
, $p = 1, 2, ..., 6$; $q = 1, 2, 3$

$$(3^{1} + 3^{2} + 3^{3}) \frac{5^{7} - 1}{4} = (1 + 3^{1} + 3^{2} + 3^{3}) \frac{5^{7} - 1}{4} - s_{1} = s_{2} \rightarrow s_{1} + s_{2} = \frac{3^{4} - 1}{2} \cdot \frac{5^{7} - 1}{4}$$

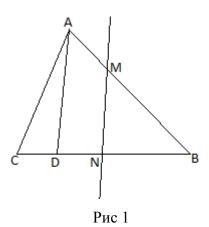
Наконец, сумма делителей вида $2^1 \cdot 3^q \cdot 5^p$, p=1,2,...,6; q=1,2,3 равна $2(s_1+s_2)$, сумма делителей вида $2^2 \cdot 3^q \cdot 5^p$, p=1,2,...,6; q=1,2,3 равна $2^2(s_1+s_2)$ и т.д., сумма делителей вида $2^r \cdot 3^q \cdot 5^p$, p=1,2,...,6; q=1,2,3; r=1,2,...,8 равна

$$(2+2^2+...+2^8)(s_1+s_2) = (1+2+2^2+...+2^8)(s_1+s_2) - (s_1+s_2) = s_3$$
.

Откуда сумма всех делителей $s_1 + s_2 + s_3 = (2^9 - 1)(s_1 + s_2) = (2^9 - 1) \cdot \frac{(3^4 - 1)}{2} \cdot \frac{(5^7 - 1)}{4}$

5. Othet: 1)
$$AM : MB = \frac{\sqrt{2n} - \sqrt{m+n}}{\sqrt{m+n}}$$
. 2) $BN : NC = \frac{\sqrt{n}}{\sqrt{2(m+n)} - \sqrt{n}}$

Решение



Обозначения:

AM : MB = p : q, BN : NC = u : v (искомые величины)

 $S_{ACD}: S_{ABD} = m:n, m < n$ (условие)

$$S_{ABD} = \frac{n}{m+n} S_{ABC}, \ S_{ACD} = \frac{m}{m+n} S_{ABC}, \ S_{MBN} = \frac{S_{ABC}}{2}$$

Треугольники MBN и ABD подобные с коэффициентом $k = \frac{q}{p+a}$, поэтому

$$S_{MBN}: S_{ABD} = k^2 \rightarrow S_{MBN}: S_{ABD} = \frac{m+n}{2n} = \left(\frac{q}{p+q}\right)^2 \rightarrow \frac{p+q}{q} = \sqrt{\frac{2n}{m+n}} \rightarrow p: q = \frac{\sqrt{2n} - \sqrt{m+n}}{\sqrt{m+n}}$$

$$BN:BD = \frac{q}{p+q}, \ BD = \frac{n}{m+n}BC \to BN = \frac{qn}{(p+q)(m+n)}BC \to NC = BC - BN \to RC$$

$$\rightarrow NC = \left(1 - \frac{qn}{(p+q)(m+n)}\right)BC = \left(\frac{pm+qm+pn}{(p+q)(m+n)}\right)BC$$

$$BN : NC = u : v = \frac{nq}{pm + qm + pn} = \frac{\sqrt{n}}{\sqrt{2(m+n)} - \sqrt{n}}$$