10 класс

11. Найдите param1 всех корней уравнения param2.

param1	param2	Ответ
сумму	$2^{3x^2-6} - 4 \cdot 2^{(x+2)^2} + 2^{2x(x+1)} - 2^{6(x+2)} = 0$	2
сумму	$3^{3x^2-2} - 3^{x(x+6)} + 3^{x(2x+3)} - 9 \cdot 27^{3x} = 0$	3
сумму	$5^{3x^2-4} - 5^{x(x+2)} + 5^{(x-1)(2x+3)} - 5 \cdot 125^x = 0$	1
произведение	$2^{3x^2-1} - 64 \cdot 2^{(x+1)^2} + 2^{2x^2+x-1} - 128 \cdot 8^x = 0$	-4
произведение	$3^{3x^2-2} - 3^{x(x+2)} + \frac{1}{9} \cdot 3^{x(2x+1)} - 27^x = 0$	-1

12. Вася выписал все такие числа x, для которых оба числа $x + \frac{1}{x}$ и param1 являются целыми. Найдите сумму квадратов чисел, выписанных Васей.

param1	Ответ
x(x-7)	49
x(x-8)	64
x(x-9)	81
x(x - 10)	100

13. Найдите **наименьшее** натуральное n такое, что param1.

param1	Ответ
$\sin(n^{\circ} + 80^{\circ}) + \sin(n^{\circ} - 40^{\circ}) + \sin(n^{\circ} + 70^{\circ}) - \cos(25^{\circ}) = 0$	105
$\cos(n^{\circ} + 20^{\circ}) - \cos(n^{\circ} + 80^{\circ}) - \sin(n^{\circ} + 80^{\circ}) + \sin(15^{\circ}) = 0$	235
$\sin(n^{\circ} + 100^{\circ}) + \sin(n^{\circ} - 20^{\circ}) + \sin(n^{\circ} + 50^{\circ}) + \cos(5^{\circ}) = 0$	165
$\cos(n^{\circ} - 50^{\circ}) - \cos(n^{\circ} + 10^{\circ}) - \sin(n^{\circ} + 130^{\circ}) - \sin(75^{\circ}) = 0$	65

14. Уравнение param1 имеет решение $x_0 = a + b$. Какое **наибольшее** значение может принимать прозведение ab?

param1	Ответ
(2x+a)(2x+b) = 28	1,12
(3x+a)(3x+b) = 49	1
(2x+a)(2x+b) = 22	0,88
(4x+a)(4x+b) = 81	1

15. Среди первых ста членов арифметической прогрессии с положительной разностью есть числа param1. Найдите **наименьшее** возможное значение param2 члена прогрессии.

param1	param2	Ответ
$\frac{13}{6}, \frac{75}{2}$ и $\frac{389}{6}$	второго	-0,5

$\frac{9}{2}$, $\frac{177}{4}$ и $\frac{249}{4}$	третьего	-10,5
$\frac{1}{2}, \frac{99}{10}$ и $\frac{177}{10}$	третьего	-1,7
$\frac{11}{2}, \frac{213}{14}$ и $\frac{541}{14}$	седьмого	-14,5

16. Дан клетчатый прямоугольник размера param1. Сколькими способами его можно разрезать на клетчатые прямоугольники размера 1×2 и 1×7 ?

param1	Ответ
1×60	10196
1×61	12083
1×62	14484
1×58	7165
1×59	8547

17. Из концов диаметра AB окружности Ω проведены хорды AC и BD. Эти хорды пересекаются в точке M. Известно, что величина $AC \cdot AM + BD \cdot BM$ равна param1, а косинус угла AMB равен param2. Какое **наибольшее** значение может принимать произведение $AM \cdot BM$?

param1	param2	ответ
9	-0,2	3,75
196	-0,4	70
16	-0,6	5
169	-0,3	65
1156	-0,7	340

18. Для каждого натурального n, не являющегося точным квадратом, вычисляется количество значений переменной x, для которых оба числа $x + \sqrt{n}$ и $x^2 + param 1 \cdot \sqrt{n}$ являются натуральными, меньшими рагата. Найдите общее количество таких значений x.

param1	param2	ответ
18	200	108
20	210	99
22	250	117
24	300	143
26	330	148

19. В четырёхугольнике ABCD, в котором BA=BC и DA=DC, продолжения сторон BA и CD пересекаются в точке N, а продолжения сторон BC и AD — в точке M. Известно, что разность длин двух сторон четырёхугольника ABCD равна радиусу вписанной в этот четырёхугольник окружности. Найдите длину отрезка param1, если param2.

param1	param2	Ответ
BD	MN = 9	4,5
BD	MN = 13	6,5

MN	BD = 7	14
MN	BD = 11	22

20. Найдите param1 при условии param2.

param1	param2	Ответ
максимум $2x + y$	$ 4x-3y + 5\sqrt{x^2 + y^2 - 20y + 100} = 30$	16
максимум х+2у	$ 4y-3x +5\sqrt{x^2+y^2+20y+100}=40$	-12
максимум 2у-х	$ 4y+3x +5\sqrt{x^2+y^2+10x+25}=15$	8
максимум х-5у	$ 5x-12y +13\sqrt{x^2+y^2-26y+169}=156$	-5
минимум у-5х	$ 5y-12x +13\sqrt{x^2+y^2+26x+169}=156$	5