10-11 классы

Задача 1/1. Среднее арифметическое девяти неотрицательных чисел равно 20. Какое наибольшее значение может принимать среднее из них по величине?

Задача 1/2. Среднее арифметическое девяти неотрицательных чисел равно 10. Какое наибольшее значение может принимать среднее из них по величине?

Задача 1/3. Среднее арифметическое одиннадцати неотрицательных чисел равно 12. Какое наибольшее значение может принимать среднее из них по величине?

Задача 1/4. Среднее арифметическое одиннадцати неотрицательных чисел равно 24. Какое наибольшее значение может принимать среднее из них по величине?

Задача 2/1. Сколько различных натуральных решений имеет уравнение

$$\left[\frac{x}{2}\right] + \left[\frac{x}{4}\right] + \left[\frac{x}{8}\right] + 507 = x?$$

Задача 2/2. Сколько различных натуральных решений имеет уравнение

$$\left[\frac{x}{2}\right] + \left[\frac{x}{4}\right] + \left[\frac{x}{8}\right] + 608 = x?$$

Задача 2/3. Сколько различных натуральных решений имеет уравнение

$$\left[\frac{x}{2}\right] + \left[\frac{x}{4}\right] + \left[\frac{x}{8}\right] + 709 = x?$$

3адача 2/4. Сколько различных натуральных решений имеет уравнение

$$\left[\frac{x}{2}\right] + \left[\frac{x}{4}\right] + \left[\frac{x}{8}\right] + 810 = x?$$

Задача 3/1. Из квадрата 218×218 вырезали квадратик 2×2 так, что оставшуюся фигуру удалось разрезать на прямоугольники 1×5 . На каком минимальном расстоянии от края доски может находиться квадратик, если сторона клетки равна 1 см? (Ответ дайте в сантиметрах.)

Задача 3/2. Из квадрата 418×418 вырезали квадратик 2×2 так, что оставшуюся фигуру удалось разрезать на прямоугольники 1×5 . На каком минимальном расстоянии от края доски может находиться квадратик, если сторона клетки равна 1 см? (Ответ дайте в сантиметрах.)

Задача 3/3. Из квадрата 698×698 вырезали квадратик 2×2 так, что оставшуюся фигуру удалось разрезать на прямоугольники 1×7 . На каком минимальном расстоянии от края доски может находиться квадратик, если сторона клетки равна 1 см? (Ответ дайте в сантиметрах.)

Задача 3/4. Из квадрата 418×418 вырезали квадратик 2×2 так, что оставшуюся фигуру удалось разрезать на прямоугольники 1×7 . На каком минимальном расстоянии от края доски может находиться квадратик, если сторона клетки равна 1 см? (Ответ дайте в сантиметрах.)

Задача 4/1. Найдите наименьшее возможное значение натурального числа n, при котором число

$$A = \sqrt{99 + \sqrt{n}} + \sqrt{99 - \sqrt{n}}$$

является целым.

Задача 4/2. Найдите наименьшее возможное значение натурального числа n, при котором число

$$A = \sqrt{98 + \sqrt{n}} + \sqrt{98 - \sqrt{n}}$$

является целым.

Задача 4/3. Найдите наименьшее возможное значение натурального числа n, при котором число

$$A = \sqrt{97 + \sqrt{n}} + \sqrt{97 - \sqrt{n}}$$

является целым.

Задача 4/4. Найдите наименьшее возможное значение натурального числа n, при котором число

$$A = \sqrt{96 + \sqrt{n}} + \sqrt{96 - \sqrt{n}}$$

является целым.

Задача 5/1. Сфера, вписанная в тетраэдр ABCD, касается граней BCD, CAD и ABD в точках A_1 , B_1 и C_1 соответственно. Известно, что $\angle BA_1D=115^\circ$, $\angle CB_1D=130^\circ$. Найдите $\angle AC_1D$. Ответ дайте в градусах.

Задача 5/2. Сфера, вписанная в тетраэдр ABCD, касается граней BCD, CAD и ABD в точках A_1 , B_1 и C_1 соответственно. Известно, что $\angle BA_1D=115^\circ$, $\angle CB_1D=120^\circ$. Найдите $\angle AC_1D$. Ответ дайте в градусах.

Задача 5/3. Сфера, вписанная в тетраэдр ABCD, касается граней BCD, CAD и ABD в точках A_1 , B_1 и C_1 соответственно. Известно, что $\angle BA_1D=115^\circ$, $\angle CB_1D=125^\circ$. Найдите $\angle AC_1D$. Ответ дайте в градусах.

Задача 5/4. Сфера, вписанная в тетраэдр ABCD, касается граней BCD, CAD и ABD в точках A_1 , B_1 и C_1 соответственно. Известно, что $\angle BA_1D=125^\circ$, $CB_1D=130^\circ$. Найдите AC_1D . Ответ дайте в градусах.

Задача 6/1. По кругу записаны 150 неотрицательных целых чисел, сумма которых равна n. Назовем число $y\partial a$ чным, если оба его соседа являются натуральными. Раз в минуту выбирается удачное число, к нему прибавляется 2, а из его соседей вычитается по единице. Процесс заканчивается, если не осталось ни одного удачного числа. Найдите наибольшее значение n, при котором процесс заведомо закончится.

Задача 6/2. По кругу записаны 250 неотрицательных целых чисел, сумма которых равна n. Назовем число $y \partial a v + b u M$, если оба его соседа являются натуральными. Раз в минуту выбирается удачное число, к нему прибавляется 2, а из его соседей вычитается по единице. Процесс заканчивается, если не осталось ни одного удачного числа. Найдите наибольшее значение n, при котором процесс заведомо закончится.

Задача 6/3. По кругу записаны 350 неотрицательных целых чисел, сумма которых равна n. Назовем число $y\partial a$ чным, если оба его соседа являются натуральными. Раз в минуту выбирается удачное число, к нему прибавляется 2, а из его соседей вычитается по единице. Процесс заканчивается, если не осталось ни одного удачного числа. Найдите наибольшее значение n, при котором процесс заведомо закончится.

Задача 6/4. По кругу записаны 450 неотрицательных целых чисел, сумма которых равна n. Назовем число $y\partial a$ чным, если оба его соседа являются натуральными. Раз в минуту выбирается удачное число, к нему прибавляется 2, а из его соседей вычитается по единице. Процесс заканчивается, если не осталось ни одного удачного числа. Найдите наибольшее значение n, при котором процесс заведомо закончится.