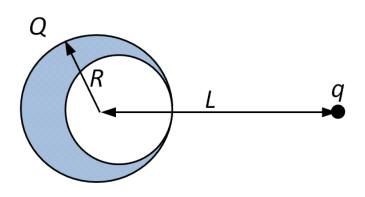
Межрегиональная предметная олимпиада КФУ по предмету "Физика" Очный тур (ответы) 2017-2018 учебный год 11 класс

Задача 1.

Найдите силу, действующую на заряд q, находящийся на расстоянии Lравномерно заряженного по объему тела с зарядом Q. Тело представляют собой вырезанной сферической сферу полостью. Объем полости равен половине объема сферы. Геометрия системы представлена на рисунке.



(20 баллов)

Возможное решение

Электрическое поле в точке расположения заряда q может быть найдена как суперпозиция полей, создаваемых шаром на расстоянии L и величиной 2Q и шаром с зарядом – Q на расстоянии L-d, где d – расстояние межу центром шара и полости.

Расстояние d = R - R'. Радиус полости R' находится из соотношения объема шара и полости $R^3/2=R$ '3. По закону Кулона

$$F = kqQ \left(\frac{2}{L^2} - \frac{1}{(L - R(1 - 2^{-1/3}))^2} \right)$$

Критерии оценивания:

Распределение заряда представлено как суперпозиция сферически-	12 б.
симметричных распределений зарядов.	
Записан закон Кулона для данной системы	4 б.
Определение размера и положения центра полости.	4 6.

Задача 2.

Поезд из большого числа одинаковых вагонов находится на плоском склоне таким образом, что первый вагон находится в нижней точке склона. У подножья склона находится длинный горизонтальный участок. Поезд свободно скатывается со склона без начальной скорости, трением можно пренебречь. Плоскость склона образует угол α с горизонтом, длина поезда L. Рельсы перпендикулярны линии раздела прямого

и наклонного участка. Через какое время последний вагон достигнет горизонтального участка? (20 баллов)

Возможное решение

Направим ось x вдоль наклонной плоскости вверх. Координату последнего вагона обозначим за x. Проекция силы тяжести на ось x принимает вид $-mgx\sin\alpha/L$. Второй закон Ньютона можно записать в виде

$$\ddot{x} + \frac{xg\sin\alpha}{L} = 0$$

Это уравнение формально совпадает с уравнением колебаний. Учитывая, что в начальный момент времени координата x принимает максимальное значение, закон движения имеет вид:

$$x = L\cos\omega t, \quad \omega = \sqrt{\frac{g\sin\alpha}{L}} \quad (x > 0)$$

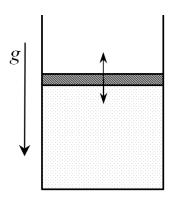
Таким образом, искомое время равно $\pi/(2\omega)$

Критерии оценивания:

Записан второй закон Ньютона	4 б.
Указано, что ускорение переменно.	4 б.
Записано уравнение, формально совпадающее с уравнением колебаний	8 б.
Записан закон движения	2 б.
Найлено выражение лля времени	2 б.

Задача 3.

 ν молей идеального одноатомного газа находится под поршнем с площадью S массой m, который может двигаться без трения. Изначально температура газа равна T. Поршень незначительно отклонят из положения равновесия, а затем отпускают. Найти период малых колебаний поршня. Теплообменом между газом и другими телами пренебречь, атмосферное давление $p_0 = 100$ кПа. (20 баллов)



Возможное решение

Давление газа в равновесном состоянии равно $p_1 = mg/S + p_0$.

Пусть поршень смещен на x, расстояние от поршня до дна в равновесном состоянии обозначим за L. Давление газа под поршнем можно найти из уравнения адиабаты (γ =5/3)

$$p = p_1 \frac{L^{\gamma}}{(L+x)^{\gamma}}$$

Сила, действующая на поршень, смещенный из положения равновесия

$$F = mg + p_0 S - Sp_1 \frac{L^{\gamma}}{(L+x)^{\gamma}}$$

$$F = mg + p_0 S - S(mg/S + p_0) \frac{1}{(1+x/L)^{\gamma}}$$

$$F = (mg + p_0 S) \left(1 - \frac{1}{\left(1 + \frac{x}{L}\right)^{\gamma}}\right) \approx (mg + p_0 S)\gamma x/L$$

$$L = \nu RT/p_1 S$$

$$F = \frac{\gamma x (mg + p_0 S)^2}{\nu RT}$$

Второй закон Ньютона принимает вид:

$$\ddot{x} + \frac{\gamma (mg + p_0 S)^2 x}{\nu RTm} = 0$$

$$T = \frac{2\pi}{p_0 S + mg} \left(\sqrt{\frac{\nu RTm}{\gamma}} \right)$$

Критерии оценивания:

Записаны силы, действующие на поршень в равновесии	4 б.
С помощью уравнения адиабаты рассчитано изменение давления при	6 б.
смещении из положения равновесия	
Записано уравнение колебаний	8 б.
Найдено выражение для периода колебаний	2 6.

Задача 4.

Какую минимальную скорость нужно придать телу, чтобы забросить его за стену высотой H, если бросок нужно осуществить с расстояния не ближе, чем d от стены? (20 баллов)

Возможное решение

Рассмотрим сначала траектории, стартующие с фиксированного расстояния L от стены под углом α к горизонту. Чтобы перебросить тело через стену траектория тела должна содержать точку (L,H)

$$H = L \tan \alpha - \frac{gL^2}{2v^2 \cos^2 \alpha}$$

$$\frac{1}{v^2} = \frac{2}{gL^2} (L \sin \alpha \cos \alpha - H \cos^2 \alpha)$$

$$= \frac{-1}{gL^2} \left(H + \sqrt{L^2 + H^2} \left(\frac{H}{\sqrt{L^2 + H^2}} \cos 2\alpha - \frac{L}{\sqrt{L^2 + H^2}} \sin 2\alpha \right) \right)$$

$$= \frac{-1}{gL^2} \left(H + \sqrt{L^2 + H^2} (\cos(2\alpha + \varphi)) \right)$$

Максимальное значение достигается при $(\cos(2\alpha + \varphi)) = -1$

$$(v_{min})^2 = \frac{gL^2}{-H + \sqrt{L^2 + H^2}} = g(H + \sqrt{L^2 + H^2})$$

Заметим, что v_{min} монотонно возрастает с увеличением расстояния до стены, поэтому окончательно получаем

$$v_{min} = \sqrt{g(H + \sqrt{d^2 + H^2})}$$

Критерии оценивания:

Записано уравнение траектории, содержащее верхнюю точку стены

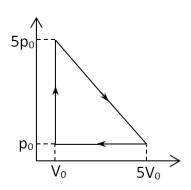
Зависимость скорости тела от угла между начальной скоростью и
горизонталью исследовалась с целью поиска минимального значения

Найдено минимальное значение скорости

4 6.

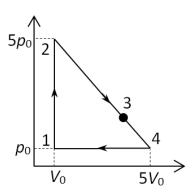
Задача 5.

Рабочим телом тепловой машины является углекислый газ. Определите КПД тепловой машины, график цикла которой представлен на рисунке. Газ считать идеальным. (20 баллов)



Возможное решение.

Рассчитаем КПД как отношение работы, совершенной за цикл к полученной от нагревателя теплоте, для этого рассмотрим поочередно участки цикла.



 $A = 16V_0 p_0 / 2 = 8p_0 V_0$

$$1 -> 2 Q = 6\Delta(pV)/2 = 12p_0V_0$$

В процессе 2->4 после нагрева следует охлаждение. Максимальная температура достигается при объеме $3V_0$, но нам нужна точка, где газ начинает отдавать теплоту. Эта точка соответствует максимуму функции $Q_{2\rightarrow 4}(V)$. Функция $Q_{2\rightarrow 4}(V)$ содержит 2 слагаемых – работу и изменение внутренней энергии. Работу находим как площадь трапеции, высота которой равна $(V-V_0)$, а малое основание определяется зависимостью давления от объема $p=5p_0$ - $(V-V_0)p_0/V_0$. Изменение внутренней энергии выражается через изменение величины pV.

$$Q_{1\to 2} = \frac{ip_0(V - V_0)}{2} \left(5 - \frac{V}{V_0}\right) + \frac{(V - V_0)p_0}{2} \left(10 - \frac{(V - V_0)}{V_0}\right)$$
$$Q_{1\to 2} = \frac{7p_0(V - V_0)(V - \frac{41V_0}{7})}{V_0}$$

Максимум достигается при $V=24V_0/7$. Теплота, полученная от нагревателя на участке 2-3 рана

 $289p_0V_0/14$. На участках 3->4 и 4->1 газ отдает теплоту.

 $K\Pi Д = 8/(12+289/14)=112/457=24,5\%$

Критерии оценивания:

Рассчитана работа, совершенная газом за цикл	2 б.	
Проведен качественный анализ наклонного участка цикла	4 б.	
Наклонный участок процесса разделен на два участка, рассчитана	8 б.	
теплота, полученная газом от нагревателя.	o u.	
Реализована правильная методика расчета КПД	4 б.	
Получено точное значение КПД	2 б.	