«БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ» 2019/20. Химия ОЧНЫЙ ОТБОРОЧНЫЙ ТУР (90 минут)

1 вариант

9 класс

Задача 9-1

На весах уравновесили два стакана одинаковой массы. В одном из них находился раствор соляной кислоты, а в другом — такая же масса раствора гидроксида натрия. К раствору соляной кислоты добавили 1 г карбоната кальция. Какую массу хлорида аммония необходимо добавить во второй стакан, чтобы равновесие на весах сохранилось?

При расчете примете, что реагенты в стаканах находились в избытке по отношению к добавляемым соединениям, а образующиеся газообразные вещества полностью выделились из растворов.

Напишите уравнения протекающих химических реакций.

Решение

В первом стакане протекает реакция:

 $2HC1 + CaCO_3 = CaCl_2 + H_2O + CO_2$

Масса первого стакана увеличилась на 1 г за счет прибавления карбоната кальция и уменьшилась на массу выделившегося углекислого газа (1 г/100 г/моль)·44 г/моль = 0.44 г. Суммарный прирост массы составил 1-0.44 = 0.56 г.

Во втором стакане протекает реакция:

 $NaOH + NH_4C1 = NaC1 + H_2O + NH_3$

Аналогично, масса второго стакана увеличилась на x г за счет прибавления хлорида аммония и уменьшилась на массу выделившегося аммиака (x г/53.5 г/моль)·17 г/моль. Суммарный прирост массы должен совпадать с первым стаканом:

$$x - (x/53.5) \cdot 17 = 0.56 \text{ r.}$$

 $x = 0.82 \text{ }\Gamma$

Таким образом, для уравновешивания весов во второй стакан необходимо добавить 0.82 г хлорида аммония.

Разбалловка:

За уравнения реакций За вычисления и правильный ответ

5.2 = 10 f5+10=15 f

Итого 25 баллов

Задача 9-2

Декагидрат тетрабората натрия $Na_2B_4O_7 \cdot 10H_2O$, известный как бура, является натриевой солью слабой борной кислоты H_3BO_3 . Водный раствор этого соединения имеет щелочную среду и используется для установления концентрации кислот.

- 1. Напишите уравнение химической реакции, протекающей при растворении буры в воде, и объясните, почему водный раствор имеет щелочную среду.
- 2. Рассчитайте, какую массу $Na_2B_4O_7 \cdot 10H_2O$ необходимо растворить в 100 мл воды, чтобы получить раствор, в котором на 1 атом бора приходится 10 атомов водорода?

Решение

1

 $Na_2B_4O_7 + 7H_2O = 2NaOH + 4H_3BO_3$

В результате гидролиза буры образуется слабая кислота и сильное основание, поэтому водный раствор имеет щелочную среду.

2..

Молярная масса буры равна 382 г/моль.

Обозначим массу буры, которую необходимо растворить в 100 мл воды, через m, тогда число атомов бора в растворе будет равно:

 $N(B) = (4m/382)N_A = 0.01047mN_A$.

Число атомов водорода в полученном растворе равно

 $N(H) = N(H)_{\text{из буры}} + N(H)_{\text{из воды}} = [(20\text{m}/382) + (2 \cdot 100/18)]N_A = [0.05236\text{m} + 11.11]N_A.$

Из условия задачи:

N(H)/N(B) = 10 или

[0.05236m+0.01111]/[0.01047m] = 10, отсюда m = 212.2 г.

Разбалловка:

За написание реакции гидролиза и объяснение основности среды $5+5=10\,6$ За расчет массы и правильный ответ $5+10=15\,6$

Итого 25 баллов

Задача 9-3

В сосуде объемом 89.6 л при температуре 136.5° С под давлением 1140 мм рт. ст. находится газообразное бинарное соединение некоторого элемента с водородом, и общее число атомов составляет $72.24 \cdot 10^{23}$, а электронов - $43.344 \cdot 10^{24}$. Выведите формулу вещества. Если оно обладает кислотными или основными свойствами, то запишите для него уравнение реакции нейтрализации. Приведите уравнение одной окислительно-восстановительной реакции с участием этого вещества.

Решение

Пусть общая формула вещества будет H_x Э, где Э – неметалл 4-7 групп Периодической таблины.

 $P = 1140 \cdot 101300/760 = 151950 \text{ } \Pi \text{a.} \text{ } T = 273 + 136.5 = 409.5 \text{ } \text{K}.$

Найдем количество вещества H_x Э, воспользовавшись уравнением Менделеева-Клапейрона.

PV=nRT. $n(H_x \ni) = (151950 \cdot 0.0896)/(409.5 \cdot 8.314) = 4$ моль.

Найдем общее количество атомов: $n(\text{атомов}) = (72.24 \cdot 10^{23})/(6.02 \cdot 10^{23}) = 12$ моль.

Значит в 1 моль вещества должно быть 3 моль атомов. Формула должна быть H_2 Э, где Э – элемент 6 группы главной подгруппы (S, Se, Te).

Найдем общее количество электронов: $n(e) = (43.344 \cdot 10^{24})/(6.02 \cdot 10^{23}) = 72$ моль.

Вычтем из него 8 моль электронов, принадлежащих атомам водорода, останется 64 моль электронов, принадлежащих 4 моль элемента. Значит атом элемента содержит 16 электронов. Это сера. Формула вещества H₂S.

 $H_2S + 2NaOH \rightarrow Na_2S + 2H_2O$

 $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$

Разбалловка:

За вывод формулы Н2Э	10 б
За установление формулы H ₂ S	5 б
За 2 уравнения реакции по 5 б.	10 б

Итого 25 баллов

Задача 9-4

В 50 мл 40% фосфорной кислоты (плотность 1.47 г/мл) растворили твердый продукт горения фосфора в атмосфере кислорода. В результате массовая доля воды в растворе стала 50%. Определите массу сгоревшего фосфора.

Решение

$$2P + 5O_2 \rightarrow 2P_2O_5$$

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$$

Определим массу исходного раствора. $m_1(pаствор) = 50 \cdot 1.47 = 73.5 \text{ г.}$

Определим массу кислоты в исходном растворе. $m_1(H_3PO_4) = 73.5 \cdot 0.4 = 29.4$ г.

Пусть в начальный раствор добавлено \mathbf{x} г P_2O_5 . Его количество равно $\mathbf{x}/142$ моль.

Значит из него образовалось дополнительно $\mathbf{x}/71$ моль H_3PO_4 , $m_2(H_3PO_4)$ $98 \cdot \mathbf{x}/71 = 1.380\mathbf{x}$ г.

Определим общую массу кислоты в конечном растворе: $m_{1+2}(H_3PO_4) = 29.4 + 1.380x$ г.

Найдем массу конечного раствора: $m(pаствора H_3PO_4) = 73.5 + x г.$

По массовой доле воды 50% в конечном растворе можно заключить, что массовая доля H_3PO_4 в нем тоже 50%, найдем **x**: $(73.5+\mathbf{x}) = 2(29.4+1.380\mathbf{x})$, т.е. $\mathbf{x}=8.352$ г.

Количество P_2O_5 равно $\mathbf{x}/142 = 8.352/142 = 0.0588$ моль. Значит фосфора сожжено 0.1176

моль, то есть $m(P) = 31 \cdot 0.1176 = 3.646$ г.

Разбалловка:

 За расчет массы сожженного фосфора
 15 б

 За 2 уравнения реакций по 5 б.
 10 б

Итого 25 баллов