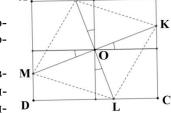
11 класс

11.1. Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют уравнению $|x| + |y| = x^2$.

Решение. См. задачу 10.1.

11.2. В данный прямоугольник вписан ромб (на каждой стороне прямоугольника лежит по вершине ромба). Докажите, что отношение диагоналей ромба равно отношению сторон прямоугольника.



Решение. Сначала докажем, что центр ромба и центр прямоугольника совпадают. Пусть О — центр ромба. Поскольку диагонали параллелограмма в точке пересечения делятся пополам, то расстояние от О до противовать расстояние от О до противовать пополам.

воположных сторон прямоугольника равны. Значит, точка О лежит на пересечении срединных линий прямоугольника (параллельных его соответствующим сторонам и равноотстоящих от них). Значит, О — центр прямоугольника. Далее, используя тот факт, что диагонали ромба перпендикулярны, получаем (из свойства равенства углов с соответственно перпендикулярными сторонами) равенство углов между диагоналями ромба и соответствующими сторонами прямоугольника (см. рис). Поэтому диагонали ромба отличаются от сторон прямоугольникам одним и тем же множителем (косинусом одного и того же угла).

11.3. Найдите все значения параметра a, для которых имеет единственное решение уравнение: a) $ax^2 + \sin^2 x = a^2 - a$; **6**) $ax^2 + \sin^2 x = a^3 - a$.

Ответ: а) a = 1, **6)** a = 1, a = -1. **Решение. а)** См. задачу 10.3. **6)** Так же, как в решении задачи 10.3, вопрос сводится к проверке значений a, для которых $a^3 - a = 0$. При a = 0 и a = 1 результат уже получен в задаче 10.3. При a = -1 имеем уравнение $\sin^2 x = x^2 \Leftrightarrow |\sin x| = |x|$. Но, как известно (например, из доказательства первого замечательного предела), $|\sin x| < |x|$ при $x \neq 0$. Таким образом, и при a = -1 уравнение имеет единственное решение. **Замечание.** Указанное неравенство можно доказать и с помощью производной, рассматривая функцию $y = x - \sin x$ при неотрицательных x, эта функция имеет неотрицательную производную и обращается в нуль при x = 0.

11.4. Докажите, что множество тех рациональных чисел x, для которых число $\sqrt{x-1} + \sqrt{4x+1}$ рационально, является бесконечным.

Решение. Докажем, что существует бесконечное множество чисел x, для которых $x-1=a^2$ и $4x+1=b^2$ при некоторых рациональных числах a, b. Из данных уравнений имеем $b^2-4a^2=5 \Leftrightarrow (b-2a)(b+2a)=5$. Пусть b-2a=t и $b+2a=\frac{5}{t}$, где t – рациональное число.

Тогда $a = \frac{5-t^2}{4t}$, $b = \frac{5+t^2}{2t}$ и $x = a^2 + 1 = \frac{25+6t^2+t^4}{16t^2}$. Непосредственной проверкой убеждаемся,

что $4x+1=b^2$. Поскольку t – произвольное рациональное число, утверждение задачи доказано.