10.1. Даны три положительных числа, не обязательно различных. Известно, что если из произведения любых двух из них вычесть третье, то получится одно и то же число a. Докажите, что $a \ge -\frac{1}{4}$.

Решение. См. задачу. 9.1.

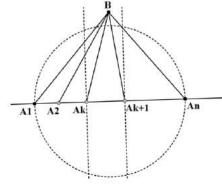
10.2. Решите уравнение $4x = 2 + \frac{x}{\sqrt{1+x}+1}$.

Ответ. $x = \frac{9}{16}$. **Решение**. Домножив дробь в правой части на выражение $(\sqrt{1+x}-1)$ (сопряженное к знаменателю), получим после сокращения на $x \ne 0$ уравнение $4x = 1 + \sqrt{1+x}$. Далее, сократив на выражение в правой части и преобразовав точно так же, как ранее, будем иметь уравнение $4(\sqrt{1+x}-1)$

- 1) = 1. Отсюда $1 + x = \frac{25}{16}$, т. е $x = \frac{9}{16}$. **Комментарий**. Заметим, что в данном решении можно и не делать проверку корня x = 9/16, подставляя его в исходное уравнение (хотя это и несложно). Дело в том, что при наших преобразованиях было сделано домножение на сопряженное выражение, которое обращается в нуль только при x = 0 (что, как отмечено, корнем не является). В конце решения было возведение в квадрат равенства с квадратным корнем в левой части и положительным числом 5/4 в правой. В силу положительности правой части такое возведение в квадрат также даёт равносильное уравнение. При других способах решения, встречавшихся в работах участников, возводились в квадрат уравнения, где правая и левая части содержали функции от х (обычно, линейные). При таких способах решения уравнения получаются, вообще говоря неравносильные (они являются следствием исходного) и нет гарантии, что не получится лишних корней. Поэтому в этом случае, если участники в конце получали x = 9/16, но не делали проверки, то оценка снижалась.
- **10.3**. Дана прямая на плоскости и на ней отмечено несколько (больше двух) точек. Докажите, что можно отметить еще одну точку на плоскости (вне данной прямой) так, чтобы среди всех треугольников с отмеченными вершинами было больше половины остроугольных.

Решение. Пусть A_1 , A_2 ,..., A_n — отмеченные точки в порядке следования на прямой. Пусть $k = \left[\frac{n}{2}\right]$, где [m]— целая часть числа m. Отметим точку B такую, что её проекция на прямую принадлежит ин-

тервалу (A_k,A_{k+1}) и $\angle A_IBA_n$ — острый (последнее условие заведомо выполняется, если взять точку B на расстоянии от прямой, большем, чем длина A_IA_n .) Покажем, что точка B является искомой. Остроугольными будут те треугольники ΔBA_iA_j , для которых точки A_i и A_j лежат по разные стороны от проекции точкиB. Действительно, угол при вершине B у любого такого треугольника острый, т.к. он не превосходит угла $\angle A_IBA_n$, а углы при основании острые, поскольку вершина проектируется внутрь основания. Количество пар точек (A_i, A_j) для таких треугольников равно $k \cdot (n-k)$. Так как всего треугольников $\frac{n(n-1)}{2}$, то достаточно проверить нера-



x

- всего треугольников $\frac{n(n-1)}{2}$, то достаточно проверить неравенство $k(n-k) > \frac{n(n-1)}{4}$. При четном n=2kимеем очевидное неравенство $k^2 > \frac{2k(2k-1)}{4}$, а при нечетном n=2k+1 неравенство принимает вид $k(k+1) > \frac{2k(2k+1)}{4}$ и также легко проверяется.
- **10.4**. Петя говорит Васе: «Я построил неравнобедренный треугольник *ABC* и провел биссектрисы *AM* и *CN*. Оказалось, что *OM* = *ON*, где *O* точка пересечения биссектрис. Сможешь ли ты определить, чему равен угол *B*?» Вася отвечает: «Да такого не может быть, чтобы в неравнобедренном треугольнике отрезки *OM* и *ON* оказались равными!». Кто из мальчиков прав?

Ответ. Прав Петя. Решение. См. задачу 9.4.

10.5. Найдите все пары натуральных чисел m, n:, для которых $n! + 4! = m^2$ (где $n! = 1 \cdot 2 \cdot ... \cdot n$).

Ответ:Две пары*n*=1, *m*=5 и*n*=5, *m*=12. **Решение.** См. задачу 9.5.