10 класс

- **10.1**. Существуют ли числа a, b, удовлетворяющие соотношению $a^2 + 3b^2 + 2 = 3ab$? **Ответ**: не существуют. **Решение**. См. задачу 9.1.
- **10.2**. Дан $\triangle ABC$. На сторонах AB и BC взяты точки M и N соответственно. Известно, что $MN \parallel AC$ и BN = 1, MN = 2, AM = 3. Докажите, что AC > 4. **Решение**. См. задачу 9.3.
- **10.3**. Найдите все значения параметра a, при которых уравнение $x^2 + y^2 + 2x = |x a| 1$ имеет два корня.
- **Ответ**: таких a не существует. **Решение**. Имеем одно уравнение с двумя неизвестными x, y. В общем (неисключительном) случае оно представляет собой некоторую кривую на координатной плоскости, т.е. уравнение имеет бесконечное множество решений. Проверим, что данное уравнение не является исключением. Запишем уравнение в виде $(x+1)^2+y^2=|x-a|$. При x=-1 уже есть два решения (при любых $a\neq -1$), соответствующие двум значениям $y=\pm\sqrt{a+1}$. При $a\neq -1$ и для значений x, близких к -1 число $|x-a|-(x+1)^2$ будет положительным, и значит, для каждого такого x есть два значения y (и значит, уравнение имеет бесконечное множество решений). Осталось рассмотреть случай, когда a=-1. В этом случае имеем уравнение $(x+1)^2+y^2=|x+1|$. Заметим, что квадрат числа меньше модуля этого числа, еслигда число меньше единицы по модулю, поэтому величина $|x+1|-(x+1)^2$ будет положительной, когда |x+1|<1 Значит и при a=-1 будет бесконечное множество решений.
 - **10.4**. Последовательность a_n задана следующим образом: $a_1 = 2^{20}$, $a_{n+1} = s(a_n)$ при всех n, где s(a) означает сумму цифр натурального числа a. Найдите a_{100} .
 - **Ответ**: 5. **Решение**. Основной используемый факт это то, что сумма цифр любого числа имеет тот же остаток при делении на 9, что и само число. Этот факт доказывается точно так же, как известный признак деления на 9. Покажем, что последовательность a_n быстро убывает, пока не станет меньше 10, и после этого она, очевидно, становится постоянной. Действительно, если число n k-значное, то $n > 10^{k-1}$, а $s(n) \le 9k < 10^{\kappa/2} = \sqrt{10}^{\kappa}$ при $k \ge 4$ (последнее неравенство легко доказать по индукции). Начальное число $a_1 = 2^{20}$ меньше, чем 10^{1024} , т.к. $2^{2015} < (2^3)^{672} < 10^{1024}$. Значит, $a_2 < 10^{528}$, $a_3 < 10^{256}$,..., $a_9 < 10^4$, т.е. a_9 имеет не более трех цифр. Поэтому $a_{10} \le 3.9 = 27$ и, очевидно, $a_{12} < 10$. Осталось найти остаток от деления 2^{2015} на 9. Поскольку 2^3 имеет вид 9p 1 (т.е. имеет остаток 8 при делении на 9), то и $2^{2013} = (2^3)^{671}$ тоже имеет такой вид (как произведение нечетного числа сомножителей вида 9p 1), а $2^{2015} = 2^{2013} \cdot 4 = (9p 1) \cdot 4 = 9q + 5$ (где q = 4p 1).