Ответ: 16. **Решение.** Целочисленные точки в первом квадранте соответствуют натуральным делителям числа $2013 = 3 \cdot 11 \cdot 61$. Количество таких делителей равно 8 (можно их выписать непосредственно или воспользоваться формулой $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$ для количества натуральных делителей числа $N = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot ... \cdot p_k^{\alpha_k}$.) С учетом симметричных точек в третьем квадранте получаем ответ.

9.4. В треугольнике ABC биссектриса AM перпендикулярна медиане BK. Найдите отношения BP:PK и AP:PM, где P – точка пересечения биссектрисы и медианы. **Ответ:** BP:PK = 1, AP:PM = 3:1. См. задачу 8.4.

10 класс

10.1. Числа х, у удовлетворяют системе уравнений

$$\begin{cases} x + y = a \\ x^2 + y^2 = -a^2 + 2 \end{cases}$$

Какое наибольшее и какое наименьшее значение может принимать произведение xy? **Ответ:** Наибольшее значение равно 1/3, наименьшее равно -1. См. задачу 9.2.

10.2. Сколько точек на гиперболе $y = \frac{2013}{x}$ имеют целочисленные координаты (x;y)?

Ответ: 16. См. задачу 9.3.

10.3. Существует ли такое число x, для которого оба числа $(\sin x + \sqrt{2})$ и $(\cos x - \sqrt{2})$ являются рациональными?

Ответ: Не существует. **Решение.** Предположим, от противного, что $\sin x + \sqrt{2} = p$, $\cos x - \sqrt{2} = q$, где p и q - рациональные числа. Тогда $1 = \sin^2 x + \cos^2 x = (p - \sqrt{2})^2 + (q + \sqrt{2})^2 = (p^2 + q^2 + 4) - 2(q - p)\sqrt{2}$. Если $q - p \neq 0$, то отсюда сразу получаем противоречие (в левой части – рациональное число, в правой – иррациональное). Если p = q, то $\sin x - \cos x = 2\sqrt{2}$, что также приводит к противоречию, т.к. $|\sin x - \cos x| \le 2$, а $2\sqrt{2} > 2$.

10.4. Дан прямоугольник, для которого численное значение площади больше периметра. Докажите, что периметр прямоугольника больше 16.

Решение. Пусть a, b — стороны прямоугольника. Из условия задачи ab > 2a + 2b $\Leftrightarrow (a-2)(b-2) > 4$ (*)

Сначала проверим, что оба множителя (a-2) и (b-2) положительны. Действительно, в противном случае из (*) следует, что a-2<0, b-2<0. Тогда -2<a-2<0, $-2\le b-2<0$ и поэтому $(a-2)(b-2)=(2-a)(2-b)<2\cdot 2=4$, что противоречит (*). Теперь для положительных чисел (a-2) и (b-2) можно воспользоваться неравенством между средним арифметическим и средним геометрическим: $(a-2)+(b-2)\ge 2\sqrt{(a-2)(b-2)}>4 \Rightarrow a+b>8 \Leftrightarrow P>16$.

11 класс

11.1. Решите уравнение $2\cos^2 x + \sqrt{\cos x} = 3$.

Ответ: $x = 2\pi k$, $k \in \mathbb{Z}$.

Решение. Поскольку $2\cos^2 x + \sqrt{\cos x} \le 2 \cdot 1 + 1 = 3$, то равенство может выполняться лишь при условии $\cos x = 1$, откуда следует ответ.