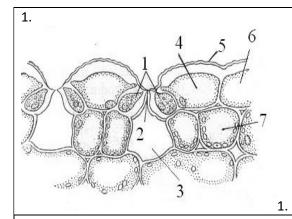


#### МЕЖРЕГИОНАЛЬНАЯ ОЛИМПИАДА ШКОЛЬНИКОВ


"Будущие исследователи – будущее науки"

#### Биология 2020 г. Финал.

#### 10-11 класс

Тест включает 15 заданий. Задания рекомендуется выполнять по порядку, не пропуская ни одного, даже самого легкого. Если задание не удается выполнить сразу, перейдите к следующему. Если останется время, вернитесь к пропущенным заданиям.

# В ЗАДАНИЯХ 1-10 РАССМОТРИТЕ РИСУНОК, ВЫБЕРИТЕ <u>ТРИ</u>ВЕРНЫХ УТВЕРЖДЕНИЯ И ЗАПИШИТЕ ИХ НОМЕРА В БЛАНКЕ ОТВЕТОВ <u>РЯДОМ С НОМЕРОМ</u> ЗАДАНИЯ ПО ВОЗРАСТАНИЮ НОМЕРОВ, НАПРИМЕР, 35 6

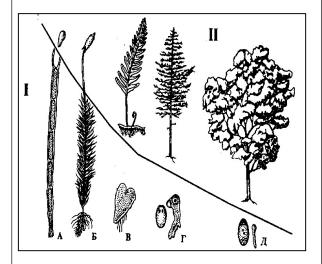


На рисунке (поперечный срез листа ириса)

- 1) клетки, обозначенные цифрой 1, НЕ содерджат хлоропластов
- 2) Клетка, обозначенная цифрой 7, содержит хлоропласты
- 3) Клетка, обозначенная цифрой 4, НЕ содержит хлоропластов
- 4) Клетка, обозначенная цифрой 7, относится к основной ткани
- 5) Структура, обозначенная цифрой 5, состоит из суберина
- 6) Клетка, обозначенная цифрой 4, относится к покровной ткани

Изображенное растение (Рябина обыкновенная)

- 1)Относится к семейству Аралиевые
- 2)Имеет моноподиальное ветвление
- 3) Имеет формулу цветка  $4_5\Pi_5$  Т $\infty$ П $\infty$
- 4) Имеет сложные парноперистые листья
- 5)Имеет плод яблоко (яблочко)
- 6)Имеет соцветие щиток



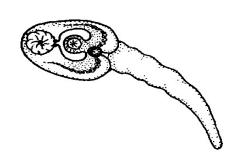

# 5

Изображенный организм

- 1) Является Прокариотическим
- 2) Относится к отделу Грибы
- 3) Относится к классу Оомицеты
- 4) Является гетеротрофом
- 5) Получает энергию, в основном, путём брожения
- 6) Размножается, в основном, почкованием

4.




На рисунке (эволюция растений)

1) У растения, обозначенного буквой Б, преобладающим поколением является гаметофит

2) <u>У растения, обозначенного буквой Д, женская форма НЕпреобладающего поколения называется зародышевый мешок</u>

- 3) У растения, обозначенного буквой Д, мужская форма НЕпреобладающего поколения называется спермий
- 4) НЕ ИМЕЕТ архегониев и антеридиев растение, обозначенное буквой  $\Gamma$
- 5) У растения, обозначенного буквой В, листья называются вайи
- 6) У растения, обозначенного буквой В, НЕпреобладающее поколение называется таллом

5.



Изображенное животное

- 1) Является личинкой плоского червя
- 2) Выходит из яйца в воде
- 3) Называется церкария
- 4) Паразитирует в теле малого прудовика
- 5) НЕ способна к бесполому размножению
- 6) Во взрослом состоянии паразитирует в кишечнике рогатого скота

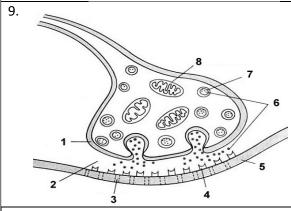
6.

Насекомое, изображенное на рисунке,

- 1) Относится к отряду Полужесткокрылые
- 2) Имеет непрямое развитие с полным превращением.
- 3) Имеет ротовой аппарат грызущего типа
- 4) У личинок насекомого отсутствует (не функционирует) половая система и отсутствуют крылья
- 5) У имаго в голенях передних ног имеются тимпанальные органы, производящие характерные звуки
- 6) Является консументом 1 порядка

7.

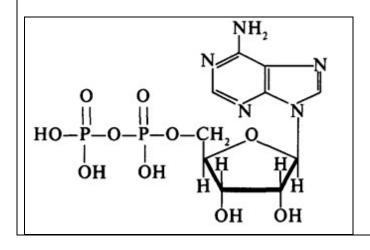



Изображенное животное (червяга кольчатая)

- 1) Относится к классу Рептилии
- 2) Относится к отряду Безногие
- 3) Обычно обитает в тёплом климате влажной почве
- 4) В яйце у личинок формируются провизорные органы: наружные жабры, желточный мешок и снабженный плавником хвост, которые потом исчезают
- 5) Имеет хорошо развитые органы зрения
- 6) Питается исключительно растительной пищей

8.

На рисунке (строение капсулы нефрона)


- 1) Цифрой 3 обозначена выносящая венула
- 2) Цифрой 2 обозначен мальпигиев клубочек
- 3) Цифрой 1 обозначена приносящая артериола
- 4). В структуре, обозначенной цифрой 2, создается пониженное давление крови.
- 5). Вторичная моча стекает в структуру, обозначенную цифрой 5
- 6) Цифрой 4 обозначена капсула Шумлянского-Боумена



На рисунке (строение синапса)

- 1) Цифрой 1 обозначена постсинаптическая мембрана
- 2) Цифрой 5 обозначена пресинаптическая мембрана
- 3) Цифрами 6 и 7 обозначен медиатор
- 4) Цифрой 4 обозначены рецепторы
- 5) В пространстве, обозначенном цифрой 2, идет активный транспорт медиатора
- 6) Цифрой 8 обозначена митохондрия

10.



Вещество, изображенное на рисунке,

- 1) Является динуклеотидом
- 2) Имеет в структуре два остатка фосфорной кислоты
- 3) Входит в состав РНК
- 4) У грибов образуется в цитоплазме в начальных реакциях гликолиза
- 5) Может переноситься из клетки в клетку
- 6) <u>У растений вступает в реакцию</u> фосфорилирования в световую фазу фотосинтеза

# ЗА ЗАДАНИЯ 1-10 МАКСИМУМ 30 БАЛЛОВ : за каждый правильный пункт ответа – 1 балл

# В ЗАДАНИЯХ 11-15 УСТАНОВИТЕ ПОСЛЕДОВАТЕЛЬНОСТЬ СОБЫТИЙ И ЗАПИШИТЕ ОТВЕТ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ЦИФР, НАПРИМЕР 532416

**11.** Расположите в правильной последовательности этапы свертывания крови и запишите ответ в виде последовательности букв: 1- образование тромбина; 2- образование фибрина-мономера; 3- образование фибрина-полимера и тромба; 4-повреждение стенки сосуда; 5-свобождение тромбопластина из тромбоцитов

Ответ: 45123

12. Установите правильную последовательность ароморфозов растений в процессе эволюции:

1-появление корней; 2- появление покровной ткани; 3-появление фотосинтеза; 4-появление плода:

5-появление семени

Ответ: 32154

13. Установите последовательность возникновения типов талломов водорослей в процессе эволюции: 1- гетеротрихальный 2- пластинчатый 3- монадный 4- тканевой 5- нитчатый

Ответ: 35124

14. Установите последовательность образования органических кислот в цикле Кребса, начиная с лимонной кислоты: 1 – лимонная кислота; 2- щавелево-уксусная кислота; 3- янтарная кислота; 4-фумаровая кислота; 5-  $\alpha$ -кетоглутаровая кислота.

Ответ: 15342

15. Установите последовательность периодов палеозойской эры, начиная с самого древнего: 1) пермь (пермский период); 2- кембрий; 3- силур; 4- карбон (каменноугольный период); 5- ордовик; 6- девон

Ответ: 253641

ЗА ЗАДАНИЯ 11-15 МАКСИМУМ 5 БАЛЛОВ (1 балл за задание)

МАКСИМАЛЬНАЯ СУММА БАЛЛОВ ЗА ТЕСТ – 35 БАЛЛОВ

# ЗАДАНИЯ СО СВОБОДНЫМ ОТВЕТОМ

## Задание 16.

Полимеразная цепная реакция (ПЦР) - это метод изучения ДНК, в котором многократно удваивается (амплифицируется) определённый участок ДНК. Место начала амплификации определяет праймер – фрагмент, комплементарный небольшой последовательности нуклеотидов (4-6 штук) на 3'-концах разных цепей изучаемого участка ДНК. Фермент ДНК-полимераза находит 3'-конец праймера и продолжает синтез - удлиняет ДНК.

Раствор, в котором происходит ПЦР, находится в специальном приборе — амплификаторе. В этом растворе содержится избыток праймеров и всех нуклеотидов, а также ионы Mg и термостабильная ДНК-полимераза. Раствор в процессе ПЦР многократно нагревают и охлаждают. Сначала во время нагревания идёт денатурация ДНК. Затем при постепенном охлаждении происходит амплификация. При дальнейшем охлаждении нити ДНК гибридизируются с праймерами, а репликация не происходит.

Некоторые характеристики ДНК:

- средняя масса нуклеотида составляет 345 а.е.м.;
- на 1 виток двойной спирали приходится 10 пар нуклеотидов;
- расстояние между нуклеотидами примерно равно 0,34 нм.
- Проведена ПЦР ДНК, одна из цепей которой имеет вид:
- З'ЦГЦААТТГЦА.....ТААГГТТТЦЦ<sup>5</sup>

Известно, что в изучаемой ДНК есть только один участок, которому комплементарны праймеры. После 21 цикла "нагрев-охлаждение" масса всей амплифицированной (добавившейся за это время) ДНК составила  $15,525 \times 10^{10}$  а.е.м. КПД амплификации равен 85,831%.

#### Определите:

- 1. Структуру комплементарного участка второй цепи ДНК.
- 2. Какие из предложенных фрагментов могут служить праймерами для данного участка молекулы ДНК, объясните почему:
  - а) ТААГГ; б) ЦЦТТТ, в) ААУГТ; г) ЦГУАА д) АААГГ; е) ГЦГТТА; ж) ГЦГ;
  - з) ГЦГТТААЦГТ

- 3. Количество амплифицированных фрагментов (добавленных двухнитевых фрагментов) изучаемого участка ДНК в конце процесса (после 21 цикла "нагрев-охлаждение"). Полученное число округлите до ближайшего круглого числа.
- 4. Число нуклеотидов в одинарной нити ДНК исследуемого участка.
- 5. Число витков спирали исследуемого участка ДНК.
- 6. Длину исследуемого участка ДНК.
- 7. Приведите примеры практического использования ПЦР (минимум 2 примера).

8.

#### Решение:

- 1. 3'ЦГЦААТТГЦА.....ТААГГТТТЦЦ<sup>5'</sup> (написана компл. цепь **1 б.**) 5'ГЦГТТААЦГТ......АТТЦЦАААГГ<sup>3'</sup> (расставлены 3' и 5' **1 балл**)
- 2. ГЦГТТА и ЦЦТТТ, т.к. они комплементарны 3'-концам двух цепей (по 1 баллу за каждый, итого 2 балла).
- 3. Если был только один изученный участок, а число участков все время удваивалось, то это геометрическая прогрессия, где первый член  $b_1 = 1$ , а знаменатель прогрессии q=2 (за выявление геом. прогрессии 2 балла)

Соответственно, теоретически возможное число однонитевых фрагментов за число амплификаций n=21 вычисляем по формуле (за формулу 2 балла):

 $b_n = b_1 \times q^{n-1} = 1 \times 2^{21-1} = 1048576$  (правильное уравнение и расчет – **5 баллов**)

b практ = b теор x КПД =  $1048576 \times 0.85831 \sim 900\ 000\ (2\ балла)$ 

Число амплифицированных двухнитевых фрагментов (дуплексов) = 900000 /2 = 450000 (2 балла)

4. Среднее число нуклеотидов одной нити

М всей ДНК n cp = ----- = 15,525 x 10 
$$^{10}$$
 / 345 x 9 x 10  $^5$  = 500 **(2 балла)** М нуклеотида x b практ

N нуклеотидов дуплекса

- 5. N витков спирали дуплекса = ----- =  $500 \times 2 / 20 = 50$  (2 балла)
  - 10 х 2 нуклеотидов на виток
- 6. L (длина участка ДНК) = N нуклеотидов х расстояние между нуклеотидами =  $500 \times 0.34$  нм = 170 нм (2 балла)
- 7. ПЦР применяется в различных областях биологии и медицины для выявления возбудителей заболеваний, патологических генов, исследованиях ДНК (криминалистика, установление родства, клонирование и т.д.) (по 1 баллу за пример, итого 2 балла)

#### Итого за задание 25 баллов

### **Задание 17.**

Необходимо создать две экосистемы, которые можно разместить в герметичной колбе объемом 3-4 литра, которая сможет просуществовать не менее 1 месяца при температуре 23°С и ежедневном освещения дневным светом на протяжении 9 часов. Каждая из экосистем должна включать 4 элемента, каждый из которых выполняет различные функции в экосистеме.

Из перечисленных ниже объектов можно составить  $\underline{moлько\ 2}$  экологических системы, которые будут соответствовать данным условиям существования.

Предложите такие экосистемы, определите функции компонентов и объясните свой выбор. Заполните таблицу:

| Sanominie raoming.         |                      |                  |
|----------------------------|----------------------|------------------|
| Элементы экосистемы 1 (№ в | Функция в экосистеме | Пояснение выбора |
| списке)                    |                      |                  |
|                            |                      |                  |
|                            |                      |                  |
|                            |                      |                  |
|                            |                      |                  |
| Элементы экосистемы 2 (№ в | Функция в экосистеме | Пояснение выбора |
| списке)                    |                      | _                |
|                            |                      |                  |
|                            |                      |                  |

Определите элементы экосистем с номерами 1-12, назовите биологические виды (роды).

Элементы экосистем:

1. Цветковое растение с мясистыми листьями, нетоксичное, со средней скоростью роста



7. Личинка насекомого, обитающая в воде



2. Цветковое влаголюбивое и теплолюбивое растение с высокой скоростью роста



8. Пресноводный моллюск средних размеров



3. Пресноводная нитчатая водоросль со средней скоростью роста



9. Стайное растительноядное наземное насекомое

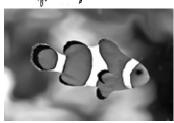


4. Водное цветковое растение с жесткими листьями



10. Пресноводное растительноядное ракообразное небольших размеров




5. Зеленый мох без ризоидов



11. Летающее насекомое



6. Морская коралловая рыбка



12. Небольшой наземный растительноядный моллюск



- 13. Стерильная увлажненная почва
- 14. Болотная сильно увлажненная почва
- 15. Стерилизованная морская вода
- 16. Стерилизованная озерная вода
- 17. Культура пресноводных бактерий
- 18. Культура почвенных бактерий
- 19. Культура бактерий морской воды
- 20. Споры лесных грибов

# Решение:

| Элементы экосистемы | Функция в экосистеме | Пояснение выбора                              |  |
|---------------------|----------------------|-----------------------------------------------|--|
| 1 (№ в списке)      |                      |                                               |  |
| 1                   | Продуцент            | Средняя скорость роста позволит дать питание  |  |
|                     |                      | моллюску, не очень быстро расходует           |  |
|                     |                      | углекислый газ и питательные вещества,        |  |
|                     |                      | выделяет кислород                             |  |
| 12                  | Консумент            | Питается не быстро, всеядная, будет есть      |  |
|                     |                      | толстянку, выделяет углекислый газ            |  |
| 18                  | Редуцент             | Усваивают и минерализуют продукты обмена      |  |
|                     |                      | улитки, могут разрушать отмершие остатки      |  |
|                     |                      | толстянки                                     |  |
| 13                  | Абиотический         | Субстрат для корней растения, содержит воду и |  |
|                     | компонент (субстрат) | минеральные соли                              |  |

| Элементы экосистемы | Функция в экосистеме | Пояснение выбора                            |  |
|---------------------|----------------------|---------------------------------------------|--|
| 2 (№ в списке)      |                      |                                             |  |
| 3                   | Продуцент            | Растет с умеренной скоростью, дает пищу и   |  |
|                     |                      | кислород для креветки, не выделяет в воду   |  |
|                     |                      | вредные вещества                            |  |
| 10                  | Консумент            | Небольшие размеры, может питаться нитчатыми |  |
|                     |                      | водорослями, выделяет углекислый газ        |  |
| 17                  | Редуцент             | Усваивают и минерализуют продукты           |  |
|                     |                      | обмена креветки, могут разрушать            |  |
|                     |                      | отмершие остатки улотрикса                  |  |
| 16                  | Абиотический         | Содержит минеральные вещества для           |  |
|                     | элемент (субстрат)   | растений                                    |  |

Если элементы (хотя бы один) выбраны неправильно, за 1 столбец 0 баллов

Правильное определение функции элемента в экосистеме (2 столбец) – по 0,5 балла за ячейку (итого

**4 балла**). Если участник выбирает иные (неподходящие) элементы, но правильно указывает их функции -2 столбец оценивается аналогично.

Правильное пояснение выбора (3 столбец) – по 0,5 балла за ячейку (итого 4 балла).

Если за 1 столбец 0 баллов, тогда за 3 столбец 0 баллов.

Элементы 1-12:

| 1 | Толстянка овальная     | 7  | Личинка стрекозы   |
|---|------------------------|----|--------------------|
| 2 | Бамбук                 | 8  | Прудовик большой   |
| 3 | Улотрикс               | 9  | Саранча перелетная |
| 4 | Роголистник            | 10 | Креветка           |
| 5 | Сфагнум                | 11 | Крапивница         |
| 6 | Рыба-клоун (амфиприон) | 12 | Улитка лесная      |

Правильное определение элементов – по 0,5 балла (итого 6 баллов)

Если правильно определены 11-12 элементов – добавляем 1 балл

Пояснение критериев выбора элементов экосистемы (от школьников не требуется, баллами не оцениваеться):

Из данных элементов можно составить экосистемы, включающие 4 обязательных элемента:

- 1. Обычная почва (абиотический компонент) продуцент консумент редуцент
- 2. Пресная вода (абиотический компонент) продуцент консумент редуцент Чтобы экосистема была стабильной в течение указанного времени, необходимо выбирать нересурсоемкие биологические компоненты, чтобы не допустить быстрого расходования ресурсов для питания. Продуцент не должен обладать быстрым ростом (иначе очень быстро заканчиваются минеральные вещества), а консумент не должен слишком быстро поедать растения (иначе быстро заканчивается пища). Исходя из этих критериев бамбук, саранчу и большого прудовика нужно исключить. Роголистник никто не будет есть, кроме прудовика, поэтому он также должен быть исключен. Для крапивницы нет питания, личинка стрекозы хищница, может существовать минимум в пятикомпонентной системе. Для болотной почвы и морской воды четырёх необходимых элементов в списке нет.

#### Итого за задание - 25 баллов

#### Задание 18.

У человека цвет волос определяется генами M (выработка черного пигмента) и R (выработка красного пигмента). Имеются варианты гена M:  $M_1$  (малое количество пигмента),  $M_2$  (среднее количество пигмента),  $M_3$  (большое количество пигмента). Рецессивный ген r не определяет синтез пигмента.

Люди с генотипами  $M_1M_1$ rr — блондины;  $M_3M_{2\text{-3}}$ rr — брюнеты;  $M_1M_3$ rr — шатены;  $M_{1\text{-3}}M_{1\text{-3}}RR$  — рыжие от светлого до темного;  $M_{1\text{-3}}M_{1\text{-3}}Rr$  — каштановые от светлого до темного. Дайте ответы на вопросы:

- 1. Как называется явление, при котором существуют более двух аллелей гена (как у гена М)?
- 2. Какой тип взаимодействия наблюдается между генами М в аллельной паре?
- 3. Какой тип взаимодействия наблюдается между генами R и r в аллельной паре?
- 4. Составьте решетку Пеннета и определите цвет волос и расщепление по фенотипу у детей, если оба родителя имеют каштановый цвет волос и генотип  $M_1M_3Rr$ .
- 5. Определите вероятность рождения в этой семейной паре сына-блондина.
- 6. Рассчитайте вероятность рождения двух сыновей-блондинов подряд у данной пары родителей.

#### Решение:

- 1. Множественный аллелизм (1 балл)
- 2. Кодоминирование (1 балл)
- 3. Неполное доминирование (1 балл)

4.

P:  $M_1M_3Rr \times M_1M_3Rr$ 

Гаметы:

|                  | $M_1R$     | $M_1r$                           | M <sub>3</sub> R                 | M <sub>3</sub> r                 |
|------------------|------------|----------------------------------|----------------------------------|----------------------------------|
| $M_1R$           | $M_1M_1RR$ | $M_1M_1Rr$                       | $M_1M_3RR$                       | $M_1M_3Rr$                       |
|                  | св-рыж     | св-кашт                          | рыж                              | кашт                             |
| $M_1r$           | $M_1M_1Rr$ | $M_1M_1rr$                       | $M_1M_3Rr$                       | $M_1M_3rr$                       |
|                  | св-кашт    | блонд                            | кашт                             | шатен                            |
| $M_3R$           | $M_1M_3RR$ | $M_1M_3Rr$                       | M <sub>3</sub> M <sub>3</sub> RR | M <sub>3</sub> M <sub>3</sub> Rr |
|                  | рыж        | кашт                             | темн-рыж                         | темн-кашт                        |
| M <sub>3</sub> r | $M_1M_3Rr$ | M <sub>1</sub> M <sub>3</sub> rr | M <sub>3</sub> M <sub>3</sub> Rr | M <sub>3</sub> M <sub>3</sub> rr |
|                  | кашт       | шатен                            | темн-кашт                        | брюнет                           |

Правильно написаны гаметы - 2 балла

Составлена решетка Пеннета и определены генотипы – 2 балла

Если хотя бы один генотип определен неправильно – 0 баллов

Правильно определены фенотипы детей – 2 балла

Если 1-2 фенотипа определены неточно — **1 балл.** Если ошибок при определении фенотипов 3 и более - 0 баллов.

#### Расшепление:

**Капт** – 4

Св-кашт – 2

Темн-кашт – 2

Рыжий – 2

Шатен – 2

Темн-рыж – 1

Св-рыж – 1

Блондин – 1

Брюнет – 1

# Или (без учета интенсивности цвета):

Кашт – 8

Рыж – 4

Шатен – 2

Блондин – 1

Брюнет – 1

## Правильно определено расщепление (любой из вариантов) – 2 балла

5. Вероятность рождения сына-блондина:  $1/16 \times 0.5 \times 100\% = 1/32 \times 100\% = 3.125\%$  (2 балла)

6. Вероятность рождения двух сыновей-блондинов подряд:  $1/32 \times 1/32 \times 100\% \sim 0.1\% (1/1024) (2 балла)$ 

Итого за задание 15 баллов.

Всего за 3 задания со свободным ответом – 65 баллов

Итого за всю работу 100 баллов= 35+65