Ответы на задания отборочного этапа олимпиады школьников Ломоносов по механике, 2011/2012 учебный год

7 — 8 класс

- **1.** 412 км.
- 2. 30 метров.
- 3. На 8 оборотов. Колеса железнодорожных вагонов сделаны в форме конуса, поэтому радиус качения у внешних колес оказывается больше, чем у внутренних, что позволяет уравнять число оборотов.
 - 4. 108 тюбиков.
- 5. Можно. Достаточно измерить отношение толщин мха на противоположных сторонах, смежных с пустой.

9 класс

- **1.** увеличилась на 25%.
- **2.** а) 30 метров.
- б) нельзя
- 3. от получаса до 1 часа 20 минут после выхода первого туриста.
- 4. $T = \frac{L}{V_0} \frac{\sin \beta}{\sin(\alpha + \beta)} = \frac{3}{4}$ с. 5. Основные тезисы ответа следующие. Тело человека не нагревается до температуры воздуха в сауне за счет теплоотдачи. При плотном контакте цепочки с телом она не нагревается выше температуры тела. Если цепочка не соприкасается с телом, то она нагревается практически до температуры воздуха. При последующем контакте цепочки с телом можно получить ожог, так в силу большой теплопроводности металла произойдет быстрый теплообмен и тело получит большое количество теплоты на небольшом участке за малое время.

10 — 11 класс

- 1. $t \in \left[0, \frac{1}{2}\right] \cup \left[\frac{4}{3}, +\infty\right)$ Время указано в часах.
 2. Во втором случае в $\frac{k-1+\sqrt{(n-1)k^2+1}}{nk^2}=\frac{5}{4}$ раз больше.
- 3. а) форму вытянутого параллелепипеда со сторонами 44, 44 и 220 сантиметров;
- б) форму куба со стороной 50 см.
- **4.** $4\sqrt{15} \approx 15, 5$ м.
- **5.** примерно 1.6 суток.
- 6. Основные тезисы ответа следующие. Тело человека не нагревается до температуры воздуха в сауне за счет теплоотдачи. При плотном контакте цепочки с телом она не нагревается выше температуры тела. Если цепочка не соприкасается с телом, то она нагревается практически до температуры воздуха. При последующем контакте цепочки с телом можно получить ожог, так в силу большой теплопроводности металла произойдет быстрый теплообмен и тело получит большое количество теплоты на небольшом участке за малое время.

1.2 Решения заданий заочного тура

10 - 11 класс

1. Закон движения первого туриста: $S = \sqrt{1+6t} - 1$, а второго $-S = 6\left(t-\frac{1}{6}\right)$ при $t \geq \frac{1}{6}$; S = 0 при $t < \frac{1}{6}$.

Требуемое условие, очевидно, выполнено, когда оба туриста находятся «по одну сторону» от знака. И не выполнено, когда знак находится между ними. Поэтому, Т. к. первый турист достигает знака в момент времени t_1 : $\sqrt{1+6t_1}-1=2$, т. е. при $t_1=\frac{4}{3}$, а второй — в момент t_2 : 6 $\left(t_2-\frac{1}{6}\right)=2$, т. е. при $t_2=\frac{1}{2}$, то подходящие моменты времени $t\in \left[0,\frac{1}{2}\right]\cup\left[\frac{4}{3},+\infty\right]$. При этом движется ли второй турист или всч ещч находится на привале - не имеет значения.

Ответ: $t \in \left[0, \frac{1}{2}\right] \cup \left[\frac{4}{3}, +\infty\right)$.

2. Пусть высота дупла H. Тогда скорость Винии перед ударом в первый раз $V_I = \sqrt{2gH}$.

Во втором случае: перед ударом Пух имеет скорость $V_1=\sqrt{2gh},\,h=H/n.$ После удара она станет $V_1'=\frac{1}{k}\sqrt{2gh}.$ При подлете к земле скорость окажется $V_{II}=\sqrt{\frac{1}{l\cdot 2}2gh+2g(H-h)}.$

Ущерб, полученный Пухом в первый раз $I_I = MV_I \tau$, где M- масса медвежонка, а $\tau-$ длительность удара. Во втором раз имеем $I_{II} = M\tau[(V_1-V_1')+V_{II}].$

Окончательно,
$$I_{II}/I_I=\frac{k-1}{\sqrt{n}k}+\sqrt{\frac{(n-1)k^2+1}{nk^2}}=\frac{5}{4}.$$

Ответ:Во втором случае в $\frac{k-1+\sqrt{(n-1)k^2+1}}{nk^2}=\frac{5}{4}$ раз больше.

3. Несложно показать, что при фиксированной сумме двух чисел их произведение максимально в том и только в том случае, когда эти числа равны. Таким образом, понятно, что имеет смысл рассматривать чемоданы, в основании которых лежит квадрат.

В случае, если более существенным оказывается условие о сумме всех трех измерений из симметрии задачи следует, что чемодан должен иметь форму куба. В таком случае его объем будет равен $(150/3)^3 = 50^3$ см³.

Длинномерный чемодан наибольшего объема имеет размеры 220/k, 220/k, 220, что соответствует объему $220^3/k^2$.

Таким образом кубический чемодан будет больше по объему, чем длинномерный, если $50^3>220^3/k^2$, то есть $k>(4.4)^{3/2}\approx 9,23$.

Для данных в условии значений k получаем

Ответ:а) форму вытянутого параллелепипеда со сторонами 44, 44 и 220 сантиметров; б) форму куба со стороной 50 см.

4. Пусть 2b — ширина поля; 2a — ширина ворот; c — расстояние до боковой линии. Проведем окружность через две штанги ворот (точки A_1 и A_2 ,

касающуюся прямой, по которой движется футболист (B- точка касания). Тогда угол A_1BA_2- максимально возможный (любой другой угол равен соответствующему вписанному в окружность углу минус некоторая величина). Радиус данной окружности есть b-c. Поэтому по теореме Пифагора: $(b-c)^2=a^2+x^2$, где — искомое расстояние. Значит, $x=\sqrt{(b-c)^2-a^2}=\sqrt{16^2-4^4}=\sqrt{240}=4\sqrt{15}\approx 15,5$ м.

Ответ $x = \sqrt{240 = 4\sqrt{15}} \approx 15,5 \text{ м.}$ Ответ $x = \sqrt{(b-c)^2 - a^2} = \sqrt{16^2 - 4^4} = \sqrt{240} = 4\sqrt{15} \approx 15,5 \text{ м.}$

5. Полярный день на поверхности Земли (на нижней ступеньке) начнется в тот момент, когда Солнце будет в зените над экватором, и будет продолжаться ровно полгода (так как неравномерностью вращения Земли мы пренебрегаем). В деканате есть возможность увидеть Солнце раньше, так как горизонт находится дальше. Угол α , который в этот момент составляет земная ось с линией, соединяющей центр Земли точкой в которой луч от Солнца касается Земли, определяется соотношением

$$\cos \alpha = R/(R+h),$$

где R— радиус Земли, h — высота деканата над поверхностью. Тот же угол составляет экваториальная плоскость с плоскостью эклиптики, то есть северная широта точки, в которой Солнце будет в зените, когда начнется полярный день в деканате, есть α .

Солнце бывает в зените во всех точках между Северным и Южным тропиками. Так как эти точки принадлежат сечению поверхности Земли плоскостью эклиптики, эти точки лежат на большой окружности, назовем ее a. Пусть A — одна из точек пересечения окружности a и экватором. Рассмотрим произвольную точку M на окружности a. Пусть (для определенности), точка A — ближайшая к ней точка пересечения окружности a и экватора. Рассмотрим сферический треугольник, образованный большой окружности дугой AM, дугой меридиана, проходящего через M и дугой экватора. Дуга $AM = \omega t$, где $\omega = 2\pi/T$, T— 1 год, t— время, прошедшее (оставшееся) с солнцестояния (прохождения Солнца в зените над A), дуга меридиана, по определению, широта точки M— θ . Также известны двугранные углы. Против дуги AM он равен $\pi/2$, а против дуги меридиана $\theta_0 = 23,4378^\circ$ (широта тропиков, угол между экваториальной плоскостью и плоскостью эклиптики). По теореме синусов для сферических треугольников имеем:

$$\sin \theta = \sin \theta_0 \sin \omega t.$$

Отсюда найдем время au, между солнцестоянием и восходом Солнца в деканате:

$$\sin \alpha = \sin \theta_0 \sin \omega \tau.$$

Для отыскания τ воспользуемся приближением малых углов: $\cos \alpha = 1 - \alpha^2/2, \sin \alpha = \alpha, \sin \omega \tau = \omega \tau$. Из приведенных выше формул получим:

$$\tau = \sqrt{\frac{2h}{R}} \frac{1}{\omega \sin \theta_0} = \sqrt{\frac{2h}{R}} \frac{T}{2\pi \sin \theta_0} \approx 0,8 \text{ суток}.$$

Отличие в продолжительности полярного дня составляет 2τ , то есть примерно 1,6 суток.

Ответ: 1,6 суток.

6. Температура тела определяется двумя конкурирующими факторами: теплоподводом и теплоотводом. Если человек заходит в парную активизируются естественные процессы теплоотвода — потоотделение, и как следствие испарение. Теплоподвод идет только путем теплообмена с воздухом. Воздух плохо проводит тепло, поэтому человек вполне может создать вокруг себя небольшой слой воздуха с более низкой, чем в окружающей среде температурой. Металлические предметы хорошо проводят тепло.

Рассмотрим цепочку, которая какое-то время повисела в воздухе, не прилегая к телу. Она выходит за пределы холодного слоя и имеет высокую температуру. При контакте ее с телом она отдает коже тепловую энергию, причем в силу большой теплопроводности, за короткий промежуток большое ее количество. Процессы теплоотвода не могут развивать такую мощность, в результате чего некоторая часть кожи нагревается очень сильно, что приводит к ожогу.