Задания для очного тура олимпиады «Ломоносов» по робототехнике — 2015, критерии оценок

7—9 классы

Задача № 1, робот M3F1 на лесоповале.

Указания по оцениванию	Оценка	Баллы
Дан верный ответ, приведено верное объяснение.	+	4
Дан верный ответ, обоснование не полно. Делимость выявлена.	+-	2
Дан неверный ответ или отсутствует обоснование.	-	0

Задача № 2, мультикоптер S301.

Указания по оцениванию	Оценка	Баллы
Дан верный ответ, приведено верное объяснение.	+	4
Ход решения верный, сделана арифметическая ошибка, не повлиявшая	+0	3
принципиально.		
Ход решения верный – условие безопасного полета выписано верно.	+-	2
Но, например, не учтен диаметр мультикоптера.		
Выявлена связь между радиусом, скоростью и ускорением. Условие	-+	1
безопасного полета выписано не верно.		
В других случаях.	-	0

Задача № 3, робот M3F1 в лабиринте.

and it is a peace with 13 massiprime.	1	1
Указания по оцениванию	Оценка	Баллы
Приведена верная схема движения в лабиринте. Верно показано какие	+	4
стенки нужно удалить в обоих пунктах.		
Приведена верная схема движения в лабиринте. Верно показано какие	+/2	3
две стенки нужно удалить. Пункт б) – нет ответа или он неверен.		
Приведена верная схема движения в лабиринте. Пункты а) и б) не	+-	2
решены.		
Или пункты а) и б) решены, но схема движения приведена с ошибкой.		
Только один пунктов а) или б) решен, схема движения приведена с	-+	1
ошибкой.		
Приведена неверная схема движения в лабиринте.	-	0

Доклад

Указания по оцениванию	Баллы
Доклад по реальному робототехническому проекту с демонстрацией	50
работы. Устройство работоспособно и полнофункционально.	
Доклад по реальному робототехническому проекту с демонстрацией	40
работы. Устройство работает со сбоями или функционал не проработан.	
Обзорный доклад, узкоспециализированный.	25
Обзорный доклад.	20
Тезисы к докладу	10
Отсутствие доклада.	0

14 марта 2015 г.

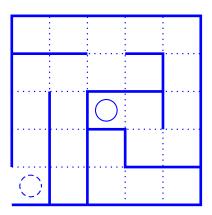
7-9 классы

Задача 1. Робот **M3F1** работает на лесоповале. Он может за одну операцию распилить любое бревно либо на 16 либо на 25 частей. Сможет ли робот **M3F1** в результате своих операций распилить одно бревно на 2015 частей?

Решение:

Ответ: нет, не сможет. При выполнении любой операции количество частей увеличивается на 15 или 24. Таким образом прибавка всегда кратна трем, а 2014 на три не делится.

Задача 2. Мультикоптер серии S301 представляет собой легкий диск диаметром 1 м, внутри которого установлено 8 моторов с пропеллерами. Мультикоптер оснащен датчиком обнаружения препятствий, который расположен в центре диска. Два мультикоптера серии S301 летят навстречу друг друг в одной плоскости с одинаковыми по модулю скоростями 18 км/ч. При срабатывании датчика обнаружения препятствий, мультикоптеры начинают разворот по окружностям, оставаясь в горизонтальной плоскости и не меняя величин скоростей. На какую минимальную величину может быть настроен датчик обнаружения препятствий, чтобы избежать столкновения, если развороты выполняются с одинаковыми ускорениями 10 м/c^2 .


Решение:

Пусть R — радиус разворота, d — диаметр мультикоптера, v — скорость мультикоптера, a — ускорение мультикоптера, L — расстояние между центрами мультикоптеров. Тогда условие безопасного разворота имеет вид:

$$\sqrt{(2R)^2 + L^2} - 2R - d > 0$$
 или $L > \sqrt{4Rd + d^2}$, где $R = \frac{v^2}{a}$.

При этом расстояние от мультикоптера до датчика другого мультикоптера будет L-d/2. Ответ: $L-d/2=\sqrt{11}-1/2$.

Задача 3. Робот M3F1 оказался в центре лабиринта (отмечен кругом), изображенного на рисунке:

Во одной из внешних стен лабиринта есть выход, который обозначен разрывом стены. В памяти робота **M3F1** нашлась следующая программа:

ОКАРАН

ПОКА <не достигли выхода из лабиринта> ЕСЛИ <слева свободно> ТО повернуть налево на 90 градусов. ИНАЧЕ ЕСЛИ <впереди свободно> ИНАЧЕ ЕСЛИ <справа свободно> ТО повернуть направо на 90 градусов. ИНАЧЕ повернуть на 180 градусов.

Вперед на одну клетку.

КОНЕЦ

- 1. Сможет ли с помощью этой программы робот ${\bf M3F1}$ выйти из лабиринта? Укажите маршрут робота.
- 2. Запереть робота в лабиринте можно, если поставить еще одну стенку. Можно ли запереть двигающегося по данной программе робота M3F1 в лабиринте, удалив
- а) две стенки;
- б) одну стенку?

Решение:

Ответ:

- 1) Робот ${\bf M3F1}$ сможет с помощью этой программы выйти из лабиринта. Это программа обхода по правилу «левой руки».
- 2) а) да, б) да.