ОЛИМПИАДА ШКОЛЬНИКОВ «ЛОМОНОСОВ» ПО ГЕОЛОГИИ 2017-2018 учебный год

ЗАДАНИЯ ПЕРВОГО ТУРА ОТБОРОЧНОГО ЭТАПА ДЛЯ УЧАЩИХСЯ 10-11 КЛАССОВ

Вопрос 1.

Часть Земли, расположенная между земной корой и ядром	Мантия
называется	
Чему равна средняя плотность планеты Земля?	5,5 г/см ³
Как называется верхняя часть литосферы?	Земная кора
Как называется оболочка Земли, расположенная на глубинах	Внешнее ядро
3500 километров	

Вопрос 2.

Какую форму рельефа образуют реки?	Пойма
Для какой территории характерен интенсивный современный	Гавайские
вулканизм?	острова
Что является характерной формой рельефа пустынь?	Бархан
Какая горная порода относится к классу метаморфических	Гнейс
горных пород?	

Вопрос 3.

Главным источником олова является минерал	Касситерит
Главным источником ртути является минерал	Киноварь
Главным источником свинца является минерал	Галенит
Главным источником цинка является минерал	Сфалерит

Вопрос 4.

Какой термин лишний?	Пролювий
Какой термин лишний?	Туф
Какой термин лишний?	Кварц
Какой термин лишний?	Известняк

Вопрос 5.

1. На какой фотографии изображена дайка?

2. На какой фотографии изображена конкреция? 3. На какой фотографии изображены квесты (куэсты)? 4. На какой фотографии изображен конгломерат?

Задание 6. Вариант 1.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 20 участков, из которых 3 участка водоносные. Случайным образом выбирается 8 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 6 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (4+8*6)/495 = 0.105$.

Отсюда следует, что искомая вероятность равна 1-0.105=0.895.

Задание 6. Вариант 2.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 12 участков, из которых 4 участка водоносные. Случайным образом выбирается 7 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 5 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (10+7*10)/220=0.364$. Отсюда следует, что искомая вероятность равна 1-0.364=0.636.

Ответ: 0.636.

Задание 6. Вариант 3.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 12 участков, из которых 5 участков водоносные. Случайным образом выбирается 6 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 4 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (6+6*15)/792 = 0.121$. Отсюда следует, что искомая вероятность равна 1-0.121=0.879.

Задание 6. Вариант 4.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 12 участков, из которых 6 участков водоносные. Случайным образом выбирается 4 участка, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 2 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (28+4*56)/924=0.273.$

Отсюда следует, что искомая вероятность равна 1-0.273=0.727.

Задание 6. Вариант 5.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 11 участков, из которых 6 участков водоносные. Случайным образом выбирается 4 участка, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 2 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (7+4*21)/462=0.197.$ Отсюда следует, что искомая вероятность равна 1-0.197=0.803.

Задание 6. Вариант 6.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 11 участков, из которых 5 участков водоносные. Случайным образом выбирается 5 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 3 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (6+5*15)/462 = 0.175$. Отсюда следует, что искомая вероятность равна 1-0.=0.825.

Задание 6. Вариант 7.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 11 участков, из которых 4 участка водоносные. Случайным образом выбирается 5 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 3 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (15+6*20)/330=0.409$. Отсюда следует, что искомая вероятность равна 1-0.409=0.591.

Задание 6. Вариант 8.

Планирование исследований водоносности предполагает, что некоторая площадь разбита на 11 участков, из которых 3 участка водоносные. Случайным образом выбирается 6 участков, на каждом из которых бурится скважина на воду. С какой вероятностью на не менее чем 4 участках скважины будет водоносными? Ответ укажите с точностью 10^{-3} .

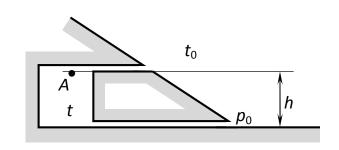
Решение. Пусть имеется всего п скважин, из которых m являются водоносными и бурится k скважин. Факт водоносности на не менее чем l участках означает, что неводоносными могут быть либо 0, либо 1, либо 2, либо ...k-l скважин.

Вероятность такого события определяется отношением $\frac{\sum\limits_{i=0}^{k-l} C_k^i \cdot C_{n-k}^{m-i}}{C_n^m}$. При заданных

значениях параметров данная вероятность равна $\frac{C_{n-k}^m + kC_{n-k}^{m-1}}{C_n^m} = (10+6*10)/165=0.424$. Отсюда следует, что искомая вероятность равна 1-0.424=0.576.

Задание 7. Вариант 1.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй — на высоте h = 50 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 0$ °C, температура воздуха в пещере всюду равна $t_1 = 17$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



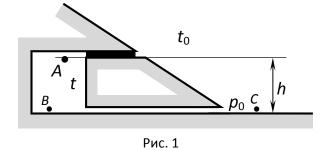
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя из уравнения Клапейрона— Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho = m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точкеA при этом равно

$$p_1 = p_0 - \rho_1 g h = p_0 - \frac{p_0 M}{RT_1} \cdot g h.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично закрыт, а верхний открыт, давление в точкахA и D (см. рис. 2) одинаково и равно

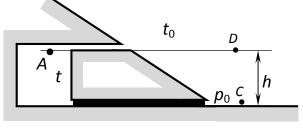


Рис. 2

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

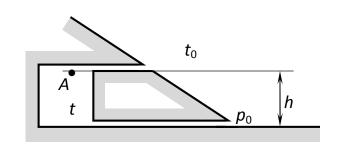
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh \left(\frac{1}{T_0} - \frac{1}{T_1} \right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 50 \cdot \left(\frac{1}{273} - \frac{1}{290} \right) \approx 37$$

Задание 7. Вариант 2.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй – на высоте h =70 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 0$ °C, температура воздуха в пещере всюду равна $t_1 = 15$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



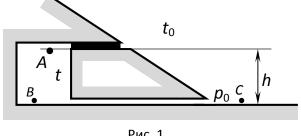
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя Клапейронауравнения ИЗ Менделеева

$$pV = \frac{m}{M}RT$$
,

для плотностивоздуха $\rho = m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точке A при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично верхний открыт, давление закрыт,

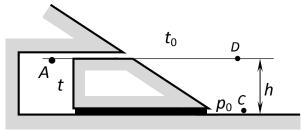


Рис. 2

точкахA и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

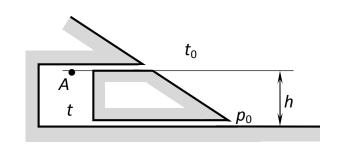
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 70 \cdot \left(\frac{1}{273} - \frac{1}{288}\right) \approx 47$$

Задание 7. Вариант 3.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй – на высоте h =90 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 0$ °C, температура воздуха в пещере всюду равна $t_1 = 17$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя Клапейронауравнения ИЗ Менделеева

$$pV = \frac{m}{M}RT$$
,

для плотностивоздуха $\rho = m/V$ получим выражение:

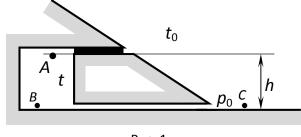


Рис. 1

$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точке A при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично верхний открыт, давление закрыт,

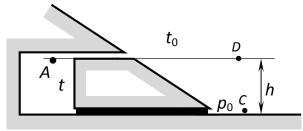


Рис. 2

точкахA и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

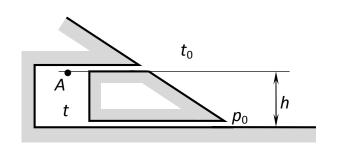
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh \left(\frac{1}{T_0} - \frac{1}{T_1} \right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 90 \cdot \left(\frac{1}{273} - \frac{1}{290} \right) \approx 67$$

Задание 7. Вариант 4.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй – на высоте h =80 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 0$ °C, температура воздуха в пещере всюду равна $t_1 = 16$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



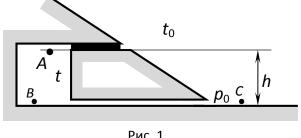
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя Клапейронауравнения ИЗ Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho = m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точке A при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично закрыт, а верхний открыт, давление в точках

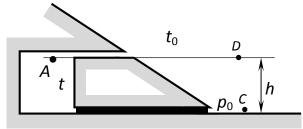


Рис. 2

A и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

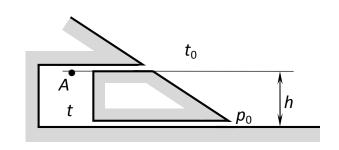
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 80 \cdot \left(\frac{1}{273} - \frac{1}{289}\right) \approx 57$$

Задание 7. Вариант 5.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй — на высоте h = 50 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 5$ °C, температура воздуха в пещере всюду равна $t_1 = 17$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



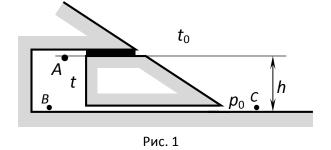
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя из уравнения Клапейрона— Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho=m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точкеA при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично закрыт, а верхний открыт, давление в точках

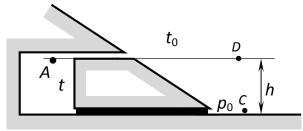


Рис. 2

A и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

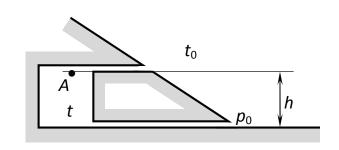
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 50 \cdot \left(\frac{1}{278} - \frac{1}{290}\right) \approx 26$$

Задание 7. Вариант 6.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй — на высоте h = 70 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 4$ °C, температура воздуха в пещере всюду равна $t_1 = 15$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



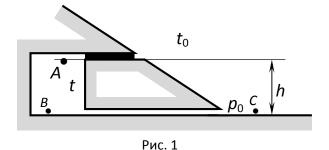
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя из уравнения Клапейрона— Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho = m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точкеA при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично

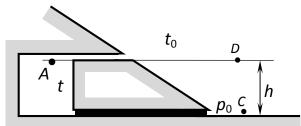


Рис. 2

закрыт, а верхний открыт, давление в точках A и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

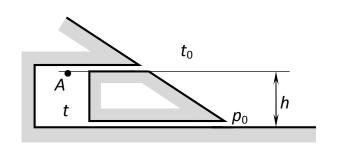
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 70 \cdot \left(\frac{1}{277} - \frac{1}{288}\right) \approx 34$$

Задание 7. Вариант 7.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй — на высоте h = 90 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 4$ °C, температура воздуха в пещере всюду равна $t_1 = 17$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя из уравнения Клапейрона— Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho = m/V$ получим выражение:

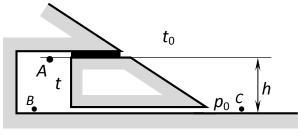


Рис. 1

$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точкеA при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично

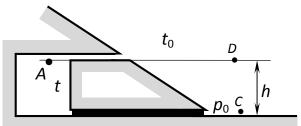


Рис. 2

закрыт, а верхний открыт, давление в точках A и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

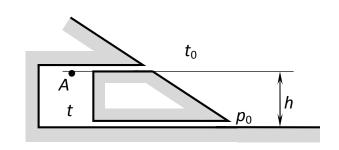
Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 90 \cdot \left(\frac{1}{277} - \frac{1}{290}\right) \approx 51$$

Задание 7. Вариант 8.

Пещера имеет два выхода на поверхность горы, один из которых находится у основания горы, а второй — на высоте h = 80 м относительно первого (см. рис.). Температура наружного воздуха $t_0 = 3$ °C, температура воздуха в пещере всюду равна $t_1 = 15$ °C. Первоначально верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт. На



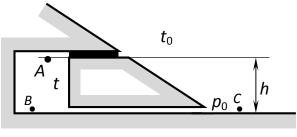
какую величину Δp изменится давление воздуха в точке A, расположенной в пещере на уровне верхнего входа, если герметично закрыть нижний выход из пещеры, а верхний открыть? Атмосферное давление у основания горы $p_0 = 10^5$ Па, молярная масса воздуха M = 29 г/моль, ускорение свободного падения g = 10 м/с². Изменением плотности воздуха, как в пещере, так и снаружи при подъеме на высоту до 100 м пренебречь. Ответ в паскалях (Па) округлите до целых.

Решение.

Исходя из уравнения Клапейрона— Менделеева

$$pV = \frac{m}{M}RT,$$

для плотностивоздуха $\rho = m/V$ получим выражение:



$$\rho = \frac{pM}{RT}.$$

В первом случае, когда верхний выход из пещеры на поверхность горы герметично закрыт, а нижний открыт, давление в точкахB и C (см. рис. 1) одинаково и равно p_0 . Давление в точкеA при этом равно

$$p_1 = p_0 - \rho_1 gh = p_0 - \frac{p_0 M}{RT_1} \cdot gh.$$

Во втором случае, когда нижний выход из пещеры на поверхность горы герметично

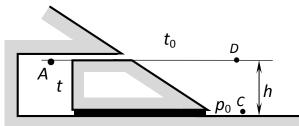


Рис. 2

закрыт, а верхний открыт, давление в точках A и D (см. рис. 2) одинаково и равно

$$p_2 = p_0 - \rho_0 gh = p_0 - \frac{p_0 M}{RT_0} \cdot gh < p_1.$$

Поэтому

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right)$$

$$\Delta p = p_1 - p_2 = \frac{p_0 M}{R} gh\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{10^5 \cdot 0,029}{8,31} \cdot 10 \cdot 80 \cdot \left(\frac{1}{276} - \frac{1}{288}\right) \approx 42$$

Задание 8. Вариант 1.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 2, боковые ребра $SA=SB=\sqrt{13}$, SC=3. На боковых ребрах SA и SB лежат точки M и N соответственно, CM и CN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

$$OC \frac{SD}{SD + CD} = OC \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$$
. Аналогично $M_1N_1 = a \frac{OM_1}{OA} = a \frac{MS}{SA} = a \frac{c}{C+a}$, $OD_1 = OD \frac{c}{C+a}$. Длина OD находится из равенства

$$SD^2 - OD^2 = c^2 - (a\frac{\sqrt{3}}{2} - OD)^2 \Leftrightarrow OD = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}}$$
, откуда $OD_1 = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a}$

Далее, поскольку
$$OC = a\frac{\sqrt{3}}{2} - \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} = \frac{2a^2 - 2(b^2 - c^2)}{2a\sqrt{3}} = \frac{a^2 - b^2 + c^2}{a\sqrt{3}},$$
 то

$$OK_1 = \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$$
. Следовательно, в треугольнике $M_1N_1K_1$ высота

$$K_1D_1 = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a} + \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2} \quad \text{и площадь треугольника}$$

$$M_1N_1K_1$$
 равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

Подставляя данные задачи, получим значение 0.624

Ответ: 0.624.

$$\sqrt{b^2 - a^2 / 4} = u \qquad ; \qquad a^2 - b^2 + c^2 = d \; ; \qquad \frac{2(b^2 - c^2) + a^2}{2} = x \; ; \qquad \frac{c}{c + a} = k \; ; \qquad a\sqrt{3} = v \; ;$$

$$S = \frac{1}{2} ak \left(\frac{x}{v} \cdot k + \frac{d}{v} \cdot \frac{u}{u + \frac{v}{2}}\right) = \frac{a \cdot k}{2v} \left(kx + \frac{d \cdot u}{u + \frac{v}{2}}\right) \; .$$

Задание 8. Вариант 2.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 2, боковые ребра SA=SB=2, SC=1. На боковых ребрах SA и SB лежат точки М и N соответственно, СМ и СN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

основного свойства биссектрисы и теоремы Фалеса следует, что
$$OK_1 = OC \frac{SD}{SD + CD} = OC \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$$
. Аналогично $M_1N_1 = a \frac{OM_1}{OA} = a \frac{MS}{SA} = a \frac{c}{c + a}, OD_1 = OD \frac{c}{c + a}$. Длина OD находится из равенства $SD^2 - OD^2 = c^2 - (a \frac{\sqrt{3}}{2} - OD)^2 \Leftrightarrow OD = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}}$, откуда $OD_1 = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a}$ Далее, поскольку $OC = a \frac{\sqrt{3}}{2} - \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} = \frac{2a^2 - 2(b^2 - c^2)}{2a\sqrt{3}} = \frac{a^2 - b^2 + c^2}{a\sqrt{3}}$, то $OK_1 = \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$. Следовательно, в треугольнике $M_1N_1K_1$ высота $K_1D_1 = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a} + \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$ и площадь треугольника $M_1N_1K_1$ равна $\frac{1}{2}a \frac{c}{c + a} \cdot \frac{(2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a} + \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$).

Подставляя данные задачи, получим значение 0.208

Ответ: 0.208.

Задание 8. Вариант 3.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 2, боковые ребра SA=SB=9/5, SC=6/5. На боковых ребрах SA и SB лежат точки М и N соответственно, СМ и СN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка О-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что $OK_1 = OC \frac{SD}{GD} = OC \frac{\sqrt{b^2 - a^2/4}}{\sqrt{16 - a^2/4}}$. Аналогично $M_1N_1 = OC \frac{SD}{GD} = OC \frac{\sqrt{b^2 - a^2/4}}{\sqrt{16 - a^2/4}}$.

основного своиства опесатрнов и теоремы чанеса следует, по окт
$$OC \frac{SD}{SD+CD} = OC \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
. Аналогично $M_1N_1=a \frac{OM_1}{OA} = a \frac{MS}{SA} = a \frac{c}{c+a}$, $OD_1 = OD \frac{c}{c+a}$. Длина OD находится из равенства $SD^2 - OD^2 = c^2 - (a \frac{\sqrt{3}}{2} - OD)^2 \Leftrightarrow OD = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}$, откуда $OD_1 = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a}$ Далее, поскольку $OC = a \frac{\sqrt{3}}{2} - \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} = \frac{2a^2-2(b^2-c^2)}{2a\sqrt{3}} = \frac{a^2-b^2+c^2}{a\sqrt{3}}$, то $OK_1 = \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$. Следовательно, в треугольнике $M_1N_1K_1$ высота $K_1D_1 = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a} + \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$ и площадь треугольника $M_1N_1K_1$ равна $\frac{1}{2}a \frac{c}{c+a} \cdot (\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a} + \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

Подставляя данные задачи, получим значение 0.275

Ответ: 0.275.

Задание 8. Вариант 4.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 1, боковые ребра SA=SB=9/5, SC=8/5. На боковых ребрах SA и SB лежат точки М и N соответственно, СМ и СN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

основного свойства биссектрисы и теоремы Фалеса следует, что
$$OK_1=OC\frac{SD}{SD+CD}=OC\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
. Аналогично $M_1N_1=a\frac{OM_1}{OA}=a\frac{MS}{SA}=a\frac{c}{c+a},OD_1=OD\frac{c}{c+a}$. Длина OD находится из равенства $SD^2-OD^2=c^2-(a\frac{\sqrt{3}}{2}-OD)^2\Leftrightarrow OD=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}$, откуда $OD_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}$ Далее, поскольку $OC=a\frac{\sqrt{3}}{2}-\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}=\frac{2a^2-2(b^2-c^2)}{2a\sqrt{3}}=\frac{a^2-b^2+c^2}{a\sqrt{3}}$, то $OK_1=\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$. Следовательно, в треугольнике $M_1N_1K_1$ высота $K_1D_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$ и площадь треугольника $M_1N_1K_1$ равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

Подставляя данные задачи, получим значение 0.148.

Ответ: 0.148.

Задание 8. Вариант 5.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 1, боковые ребра SA=SB=2, SC=9/5. На боковых ребрах SA и SB лежат точки М и N соответственно, СМ и СN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

 K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что $OK_1=OC\frac{SD}{SD+CD}=OC\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$. Аналогично $M_1N_1=a\frac{OM_1}{OA}=a\frac{MS}{SA}=a\frac{c}{c+a},OD_1=OD\frac{c}{c+a}$. Длина OD находится из равенства $SD^2-OD^2=c^2-(a\frac{\sqrt{3}}{2}-OD)^2\Leftrightarrow OD=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}$, откуда $OD_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}$ Далее, поскольку $OC=a\frac{\sqrt{3}}{2}-\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}=\frac{2a^2-2(b^2-c^2)}{2a\sqrt{3}}=\frac{a^2-b^2+c^2}{a\sqrt{3}}$, то $OK_1=\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$. Следовательно, в треугольнике $M_1N_1K_1$ высота $K_1D_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$ и площадь треугольника

 $M_1N_1K_1$ равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}).$

Решение. Обозначим проекции точек М, N и K на плоскость АВС через М₁, N₁ и

Подставляя данные задачи, получим значение 0.150.

Ответ: 0.150.

Задание 8. Вариант 6.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной 1, боковые ребра $SA=SB=\sqrt{3}$, SC=8/5. На боковых ребрах SA и SB лежат точки M и N соответственно, CM и CN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1 , N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

основного своиства оиссентрисы и теоремы Фалеса следует, что
$$OK_1-OC\frac{SD}{SD+CD}=OC\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
. Аналогично $M_1N_1=a\frac{OM_1}{OA}=a\frac{MS}{SA}=a\frac{c}{c+a},OD_1=OD\frac{c}{c+a}$. Длина OD находится из равенства $SD^2-OD^2=c^2-(a\frac{\sqrt{3}}{2}-OD)^2\Leftrightarrow OD=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}$, откуда $OD_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}$ Далее, поскольку $OC=a\frac{\sqrt{3}}{2}-\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}=\frac{2a^2-2(b^2-c^2)}{2a\sqrt{3}}=\frac{a^2-b^2+c^2}{a\sqrt{3}}$, то $OK_1=\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$. Следовательно, в треугольнике $M_1N_1K_1$ высота $K_1D_1=\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$ и площадь треугольника $M_1N_1K_1$ равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

Подставляя данные задачи, получим значение 0.139.

Ответ: 0.139.

Задание 8. Вариант 7.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной $\sqrt{3}$, боковые ребра SA=SB=2, SC=3/2. На боковых ребрах SA и SB лежат точки M и N соответственно, CM и CN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

$$OC\frac{SD}{SD+CD} = OC\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
. Аналогично $M_1N_1 =$

$$a\frac{OM_1}{OA} = a\frac{MS}{SA} = a\frac{c}{c+a}$$
, $OD_1 = OD\frac{c}{c+a}$. Длина OD находится из равенства

$$SD^2 - OD^2 = c^2 - (a\frac{\sqrt{3}}{2} - OD)^2 \Leftrightarrow OD = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}}$$
, откуда $OD_1 = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a}$

Далее, поскольку
$$OC = a\frac{\sqrt{3}}{2} - \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} = \frac{2a^2 - 2(b^2 - c^2)}{2a\sqrt{3}} = \frac{a^2 - b^2 + c^2}{a\sqrt{3}},$$
 то

$$OK_1 = \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$$
. Следовательно, в треугольнике $M_1N_1K_1$ высота

$$K_1D_1 = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a} + \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
 и площадь треугольника

$$M_1N_1K_1$$
 равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

Подставляя данные задачи, получим значение 0.283.

Ответ: 0.283.

Задание 8. Вариант 8.

При исследовании изменений геологических структур рассматривается кристалл, форма которого представляет собой треугольную пирамиду SABC. Основание пирамиды - правильный треугольник ABC со стороной основания, равной $\sqrt{3}$, боковые ребра SA=SB=8/5, SC=9/5. На боковых ребрах SA и SB лежат точки M и N соответственно, CM и CN – биссектрисы углов ACS и BCS. На боковом ребре SC лежит точка K, при этом плоскость ABK делит пополам двугранный угол с гранями CAB и SAB. Найдите площадь проекции треугольника MNK на плоскость ABC. Ответ дайте с точностью до 10^{-3} .

Решение. Обозначим проекции точек M,N и K на плоскость ABC через M_1,N_1 и K_1 соответственно. Далее, пусть CD — высота основания, пересекает отрезок M_1N_1 в точке D_1 и точка O-проекция вершины S на плоскость основания. Из основного свойства биссектрисы и теоремы Фалеса следует, что OK_1 =

$$OC\frac{SD}{SD+CD} = OC\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
. Аналогично $M_1N_1 =$

$$a\frac{OM_1}{OA} = a\frac{MS}{SA} = a\frac{c}{c+a}$$
, $OD_1 = OD\frac{c}{c+a}$. Длина OD находится из равенства

$$SD^2 - OD^2 = c^2 - (a\frac{\sqrt{3}}{2} - OD)^2 \Leftrightarrow OD = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}}$$
, откуда $OD_1 = \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} \cdot \frac{c}{c + a}$

Далее, поскольку
$$OC = a\frac{\sqrt{3}}{2} - \frac{2(b^2 - c^2) + a^2}{2a\sqrt{3}} = \frac{2a^2 - 2(b^2 - c^2)}{2a\sqrt{3}} = \frac{a^2 - b^2 + c^2}{a\sqrt{3}},$$
 то

$$OK_1 = \frac{a^2 - b^2 + c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2 - a^2/4}}{\sqrt{b^2 - a^2/4} + a\sqrt{3}/2}$$
. Следовательно, в треугольнике $M_1N_1K_1$ высота

$$K_1D_1 = \frac{2(b^2-c^2)+a^2}{2a\sqrt{3}} \cdot \frac{c}{c+a} + \frac{a^2-b^2+c^2}{a\sqrt{3}} \cdot \frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2}$$
 и площадь треугольника

$$M_1N_1K_1$$
 равна $\frac{1}{2}a\frac{c}{c+a}\cdot(\frac{2(b^2-c^2)+a^2}{2a\sqrt{3}}\cdot\frac{c}{c+a}+\frac{a^2-b^2+c^2}{a\sqrt{3}}\cdot\frac{\sqrt{b^2-a^2/4}}{\sqrt{b^2-a^2/4}+a\sqrt{3}/2})$.

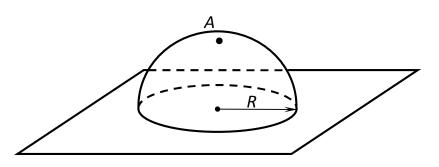
Подставляя данные задачи, получим значение 0.335.

Ответ: 0.335.

Задание 9. Вариант 1.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 30 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,25. Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

По условию задачи на окружности, служащей основанием полусферы, во всех точках достигается одинаковое значение модуля напряженности электрического поля точечного заряда q. Значит, заряд равноудален от точек этой окружности и поэтому находится на вертикальной прямой, проходящей через центр окружности. Поскольку в точке A достигается наибольшее значение модуля напряженности электрического поля этого заряда на поверхности полусферы, точка A и является ближайшей к нему точкой сферы. При этом расстояние a от точки A до заряда a меньше a.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

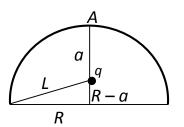
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

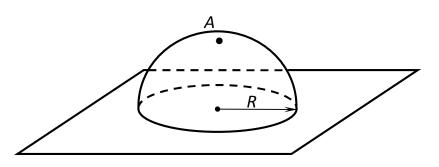
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{30}{1,25-1} \left(\sqrt{2 \cdot 1,25-1} - 1 \right) \approx 27 \text{ cm}.$$



Задание 9. Вариант 2.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 30 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,5 . Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

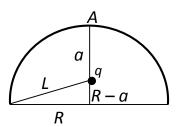
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

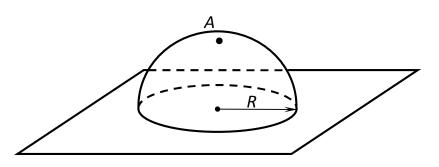
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{30}{1,5-1} \left(\sqrt{2 \cdot 1,5-1} - 1 \right) \approx 25 \text{ cm}.$$



Задание 9. Вариант 3.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 30 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,75. Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

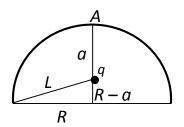
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

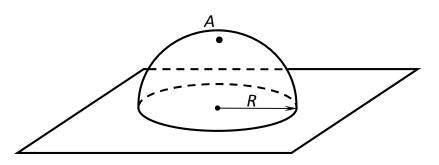
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{30}{1,75-1} \left(\sqrt{2 \cdot 1,75-1} - 1 \right) \approx 23 \text{ cm}.$$



Задание 9. Вариант 4.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 30 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 2,2 . Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

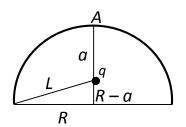
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

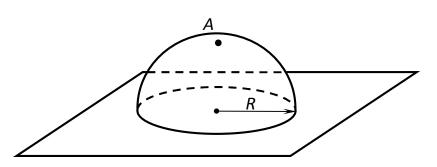
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{30}{2,2-1} \left(\sqrt{2 \cdot 2,2-1} - 1 \right) \approx 21 \text{ cm}.$$



Задание 9. Вариант 5.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 40 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,25. Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

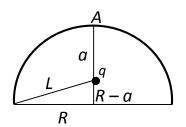
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

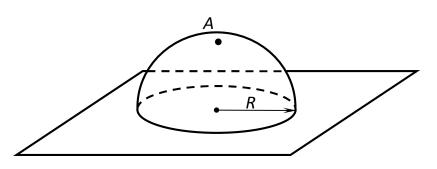
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{40}{1,25-1} \left(\sqrt{2 \cdot 1,25-1} - 1 \right) \approx 36 \text{ cm}.$$



Задание 9. Вариант 6.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 40 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,5 . Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

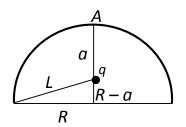
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

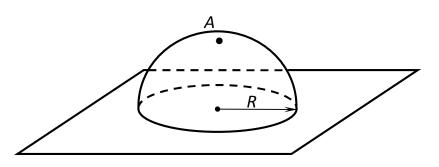
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{40}{1,5-1} \left(\sqrt{2 \cdot 1,5-1} - 1 \right) \approx 33 \,\text{cm}.$$



Задание 9. Вариант 7.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 40 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 1,75. Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

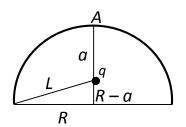
$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

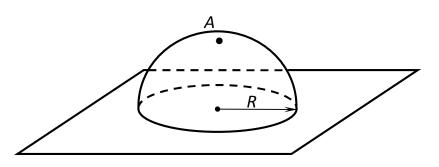
$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{40}{1,75-1} \left(\sqrt{2 \cdot 1,75-1} - 1 \right) \approx 31 \,\text{cm}.$$



Задание 9. Вариант 8.

На границе рудных тел, находящихся в толще земли, вследствие окислительно-восстановительных реакций их вещества с окружающим водным раствором часто возникают электрические заряды. В результате в пространстве вблизи рудных тел появляется аномальное электрическое поле, обнаружение и исследование которого на поверхности Земли позволяет установить места залегания рудных тел.

Из горизонтальной плоскости вырезан круг 40 R радиусом Образовавшееся отверстие накрыто полусферой того же радиуса с центром в центре круга (см. рис.). Под полученной таким образом



поверхностью в воздухе находится точечный электрический заряд. Наибольшее значение $E_{\rm max}$ модуля напряженности электрического поля этого заряда на поверхности полусферы достигается в точке A на ее вершине, а его наименьшее значение $E_{\rm min}$ — на окружности, служащей ее основанием. Отношение $\frac{E_{\rm max}}{E_{\rm min}}$ = n = 2,2 . Чему равно расстояние от точечного заряда до

ближайшей к нему точки полусферы? Считать, что поверхность не искажает электрическое поле точечного заряда.

Решение.

$$E_{max} = \frac{kq}{a^2}$$
, $E_{min} = \frac{kq}{L^2} = \frac{kq}{R^2 + (R-a)^2}$.

Отсюда следует, что

$$n = \frac{E_{max}}{E_{min}} = \frac{R^2 + (R - a)^2}{a^2}.$$

$$(n-1)a^2 + 2Ra - 2R^2 = 0$$

и выбираем его положительный корень

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right)$$

$$a = \frac{R}{n-1} \left(\sqrt{2n-1} - 1 \right) = \frac{40}{2,2-1} \left(\sqrt{2 \cdot 2,2-1} - 1 \right) \approx 28 \text{ cm}.$$

