Задача 1 Вариант 1

I-V-X-L-C-D-M

Рассмотрим последовательность чисел, заданных формулой $N_i = (i + i^2)/2 \mod 2048$, где i > 0, а mod означает взятие остатка при делении нацело. Начало последовательности: 1 3 6 10 Запишем числа последовательности N_i в римской системе счисления (в классической версии, в которой числа 45, 49, 495, 499 записываются как XLV, XLIX, CDXCV, CDXCIX). В полученной последовательности строк: I III VI X ... выберем строки, являющиеся записями чисел N_{101} ... N_{200} . Исследуем, как часто используются различные римские цифры в записях чисел N_{101} ... N_{200} . С помощью таблицы, определите римскую цифру, количество использований которой Вам надо найти, в зависимости от дня недели, в который Вы выполняете задание:

ПН ВТ СР ЧТ ПТ СБ ВС

В первой строке ответа укажите эту римскую цифру, а во второй строке - число, указывающее сколько раз эта цифра использована в римских записях элементов последовательности $N_{101} \dots N_{200}$.

Формат входных данных

Входные данные отсутствуют.

Формат результата

Выведите в первой строке римскую цифру, соответствующую текущему дню недели, и во второй строке искомое число использований этой цифры в записях элементов последовательности.

Примеры

Входные данные

Результат работы

I

- - -

Входные данные

...

Результат работы

٧

...

Задача 1 Вариант 2

I-V-X-L-C-D-M

Рассмотрим последовательность чисел, заданных формулой N_i = (i + i^2)/2 mod 2048, где i > 0, а mod означает взятие остатка при делении нацело. Начало последовательности: 1 3 6 10 Запишем числа последовательности N_i в римской системе счисления (в классической версии, в которой числа 45, 49, 495, 499 записываются как XLV, XLIX, CDXCV, CDXCIX). В полученной последовательности строк: I III VI X ... выберем строки, являющиеся записями чисел N_{201} ... N_{300} . Исследуем, как часто используются различные римские цифры в записях чисел N_{201} ... N_{300} .

С помощью таблицы, определите римскую цифру, количество использований которой Вам надо найти, в зависимости от дня недели, в который Вы выполняете задание:

	BT	CP	ЧΤ	ПТ	СБ	ВС
ПН						
I	V	X	L	С	D	М

В первой строке ответа укажите эту римскую цифру, а во второй строке - число, указывающее сколько раз эта цифра использована в римских записях элементов последовательности N_{201} ... N_{300} .

Формат входных данных

Входные данные отсутствуют.

Формат результата

Выведите в первой строке римскую цифру, соответствующую текущему дню недели, и во второй строке искомое число использований этой цифры в записях элементов последовательности.

Примеры Входные данные Результат работы I Входные данные

Результат работы

 \bigvee

. . .

Задача 1 Вариант 3

I-V-X-L-C-D-M

Рассмотрим последовательность чисел, заданных формулой N_i = $(i + i^2)/2 \mod 2048$, где i > 0, а mod означает взятие остатка при делении нацело. Начало последовательности: 1 3 6 10 Запишем числа последовательности N_i в римской системе счисления (в классической версии, в которой числа 45, 49, 495, 499 записываются как XLV, XLIX, CDXCV, CDXCIX). В полученной последовательности строк: I III VI X ... выберем строки, являющиеся записями чисел N_{301} ... N_{400} . Исследуем, как часто используются различные римские цифры в записях чисел N_{301} ... N_{400} . С помощью таблицы, определите римскую цифру, количество использований которой Вам надо найти, в зависимости от дня недели, в который Вы выполняете задание:

ПН	ВТ	CP	ЧТ	ПТ	СБ	ВС
I	V	X	L	С	D	М

В первой строке ответа укажите эту римскую цифру, а во второй строке - число, указывающее сколько раз эта цифра использована в римских записях элементов последовательности $N_{301} \dots N_{400}$.

Формат входных данных

Входные данные отсутствуют.

Формат результата

Выведите в первой строке римскую цифру, соответствующую текущему дню недели, и во второй строке искомое число использований этой цифры в записях элементов последовательности.

Примеры

Входные данные

Результат работы

I

...

Входные данные
Результат работы
V

Задача 1 Вариант 4

I-V-X-L-C-D-M

Рассмотрим последовательность чисел, заданных формулой N_i = (i + i^2)/2 mod 2048, где i > 0, а mod означает взятие остатка при делении нацело. Начало последовательности: 1 3 6 10 Запишем числа последовательности N_i в римской системе счисления (в классической версии, в которой числа 45, 49, 495, 499 записываются как XLV, XLIX, CDXCV, CDXCIX). В полученной последовательности строк: I III VI X ... выберем строки, являющиеся записями чисел N_{401} ... N_{500} . Исследуем, как часто используются различные римские цифры в записях чисел N_{401} ... N_{500} . С помощью таблицы, определите римскую цифру, количество использований которой Вам надо найти, в зависимости от дня недели, в который Вы выполняете задание:

ПН	ВТ	CP	ЧТ	ПТ	СБ	ВС
1	V	Х	L	С	D	М

В первой строке ответа укажите эту римскую цифру, а во второй строке - число, указывающее сколько раз эта цифра использована в римских записях элементов последовательности $N_{401} \dots N_{500}$.

Формат входных данных

Входные данные отсутствуют.

Формат результата

Выведите в первой строке римскую цифру, соответствующую текущему дню недели, и во второй строке искомое число использований этой цифры в записях элементов последовательности.

Примеры

Входные данные

Результат работы

ı

...

Входные данные

- - -

Результат работы

V

...

Задача 2

Четырехдневная неделя

В одной стране правительство решило перейти на четырехдневную рабочую неделю. Для этого были отменены все праздничные дни (например, 1 января, 8 марта и т. п.), но выходным днем помимо субботы и воскресенья был объявлен каждый четвертый день с понедельника по пятницу. Начало очередного года начинает отсчет каждого четвертого дня снова, то есть сначала должны пройти три рабочих дня, только после этого наступит дополнительный выходной. Например, если 1 января приходится на понедельник, то дополнительными выходными в январе будут 4, 10, 16, 22 и 26 января.

Напишите программу, которая определит дату дополнительного выходного с заданным номером.

На стандартном потоке ввода вводится год (например, 2018) и желаемый номер дополнительного выходного в этом году, отсчитываемый от 1. Год изменяется в диапазоне от 1902 до 2037 года. Номер дополнительного выходного - положительное 32-битное целое число.

В стране действует грегорианский календарь во всем промежутке дат.

На стандартный поток вывода напечатайте два числа: номер месяца (1 - январь, 12 - декабрь), номер дня в месяце (от 1). Если дополнительного выходного с таким порядоковым номером в году нет, напечатайте два нуля.

Ваше решение будет протестировано на полном наборе тестов после окончания тура.

Примеры

Входные данные

2018

1

Результат работы

Задача 3

Hepta-число

Формат входных данных

В первой строке содержится число A — целое, неотрицательное (0 \leq A \leq 63000). В второй строке содержится число В — целое, неотрицательное (0 \leq B \leq 63000).

Формат результата

В первой и единственной строке выводятся искомые разряды двоичной записи «Нерtaчисла», сначала младшие, затем старшие (т. е. в обратном порядке, если сравнивать с обычной записью двоичных чисел).

Примеры

Входные данные

16

2

Результат работы

101000100000001

Входные данные

0

Результат работы

1

Входные данные

4

8

Результат работы 10001

Задача 4

Лабиринт для Петра

Поросенок Петр, который всё еще ездит на своем красном тракторе, нашел как-то карту подземной страны. Вся она состояла из кем-то вырубленных в скалах комнат и туннелей, соединяющих комнаты. В туннелях дует ветер, так что передвигаться по ним можно только в одном направлении. У каждой комнаты есть двери: входные или выходные. Через входную дверь можно попасть в комнату из некоторого туннеля. Через выходную дверь можно попасть из комнаты в один из туннелей. Вход в подземную страну всего один — он ведет в один из туннелей. Выходов из подземной страны не менее одного — в каждый выход ведет свой туннель. Петр заметил, что в любую комнату и туннель можно попасть из входа в подземную страну (возможно, пройдя через другие комнаты и туннели).

Петр заметил, что комнат было два вида. В комнатах первого вида было по одной входной двери и одной выходной двери. В комнатах второго вида было по одной входной двери и три выходные двери, помеченные магическими символами "+", "-" и "0". В каждой комнате было заклинание. Необходимо выполнить это заклинание — только после этого откроется одна из выходных дверей. На обратной стороне карты осталась расшифровка заклинаний. Где-то он уже видел эту расшифровку... Оказалось, что заклинания в комнатах первого вида — это фраза v ехрг, где ехрг — это арифметическое выражение над переменными (выражения можно вычислять, зная значения переменных), v — это одна из переменных. А заклинания в комнатах второго вида — это только ехрг.

Каждый раз, входя в подземную страну, Петр выбирает целочисленные значения всем переменным. Попав в комнату первого вида, он вычисляет её выражение ехрг и записывает его значение в переменную v, указанную в заклинании, вместо предыдущего значения этой переменной. Попав в комнату второго вида, он вычисляет выражение ехрг, и ему открывается дверь "+", "-" или "0" в зависимости от знака значения выражения.

В одном из туннелей спрятан священный кристалл, дающий силы победить злую ведьму. И он очень нужен Петру! Но вот беда, злая ведьма стерла с карты указание, где находится этот туннель. Придется Петру найти этот туннель самостоятельно, входя в подземную страну несколько раз и передвигаясь по комнатам и туннелям. Но,

чтобы это сделать в разумное время, нужно выбрать правильные значения для переменных при входе в подземную страну. Напишите программу, которая подскажет ему все такие начальные значения переменных, чтобы он мог попасть в как можно большее число туннелей. Очевидно, что всегда достаточно стольких попыток прохода по подземной стране, сколько туннелей в подземной стране.

Выражения записываются в постфиксной форме, т.е. перед каждым действием идут все его операнды. Например, выражение a b + в привычной (инфиксной) форме выглядит как a + b. А выражение a b + c * выглядит как (a + b) * c. Еще пример: выражение a b c - - в привычном виде выглядит как a - (b - c). Выражение состоит только из переменных и действий.

Выше будут оцениваться те решения, которые позволяют попасть в большее число туннелей.

Формат входных данных

В первой строке содержатся целые числа N M T E V — $(0 \le N, M < 100; 0 < T < 500; 0 < E < 500; 0 < V < 10)$. N — количество комнат первого вида, М — количество комнат второго вида, Т — количество туннелей; Е — количество выходов из подземной страны, V — количество переменных, переменные занумерованы последовательно, начиная с 0. Туннель с номером 0 — это тот единственный туннель, в который ведет вход в подземную страну. Туннели с номерами от 1 до E — это те единственные туннели, которые ведут в выходы из подземной страны. Остальные туннели с номерами от E+1 до T-1 — это внутренние туннели.

Далее идут N строк следующего вида из целых чисел (каждая строка описывает свою комнату первого вида): t1 t2 v n е.... t1 — номер туннеля, ведущего во вход в комнату. t2 — номер туннеля, в который ведет выход из комнаты. v —номер переменной, в которую надо записать значение выражения. n — количество идущих далее целых чисел (от 1 до 10), означающих постфиксную запись выражения: целое число от 0 до V-1 означает номер переменной, целое число -1 означает действие сложения, -2 означает действие вычитания, -3 означает действие умножения.

Далее идут М строк следующего вида (каждая строка описывает свою комнату второго вида): t1 t2 t3 t4 n e.... t1 — номер туннеля, ведущего во вход в комнату. t2, t3, t4 — номера туннелей, в которые ведут выходы "+", "-", "0" из комнаты, соответственно. n и последующие числа задают выражение так же, как это делается при описании комнаты первого вида.

Формат результата

Выведите в первой строке целое число К (от 1 до Т). Далее должны идти К строк, состоящих из V целых чисел, разделенных пробельными символами. Они будут означать начальные значения соответствующих по порядку переменных. Начальные значения переменных должны быть целыми числами от -1000 до 1000.

Примеры

Входные данные

01432

0123301-1

Результат работы 3 0 1 0 -1 0 0

Входные данные

```
1 1 5 3 3
0 4 0 3 0 1 -1
4 1 2 3 1 0
```

Результат работы

3 0 1 2 -1 0 -1 3 -3 7

Входные данные

0 2 7 5 2 6 1 3 5 5 0 1 -3 1 -2 0 6 2 4 1 1

Результат работы

Задача 5

Пирамида

Археологи откопали ранее неизвестную пирамиду, от которой к моменту раскопок остался только нижний ярус (цоколь) — квадрат из каменных блоков, имеющий сплошной потолок. Сканирование разнообразными приборами показало, что под потолком имеются пустоты, и даже позволило составить карту этих пустот. На основании анализа древнего текста, высеченного на угловом камне пирамиды,

археологи установили, что в нижнем ярусе пирамиды скрыта сокровищница фараонов, причём она располагается в зале, имеющем строгую прямоугольную форму и изолированном от других помещений. Таких залов в откопанном цоколе есть довольно много, но сокровищница находится в наибольшем из них по площади. Чтобы опередить мародёров, археологам нужно как можно скорее найти место расположения сокровишницы, вскрыть потолок и изъять её содержимое для исследований. Карта цоколя пирамиды представлена в виде квадрата N×N клеток (N <= 5000), каждая клетка либо пуста, либо заполнена строительным камнем. Известно, что число N делится на восемь без остатка. Программное обеспечение сканирующей аппаратуры сформировало результаты в виде сплошного битового массива N^2 битов, т.е. $N^2/8$ байтов, в котором нулевой бит соответствует пустой клетке, единичный -- клетке, заполненной камнем. Сканирование проводилось слева направо, сверху вниз, так что в массиве закодирован сначала верхний ряд клеток, потом следующий и так далее, последним идёт нижний ряд клеток. Массив был записан в текстовый файл в 16ричной системе счисления, по две 16-ричные цифры на каждый байт, при этом между цифрами в произвольных местах расставлены пробелы и переводы строк (перевод строки состоит из одного символа с соответствующим кодом). В качестве 16-ричных цифр, превосходящих 9, используются строчные латинские буквы "а" — "f". Прямоугольная область, т.е. множество клеток с координатами $x0 \le x \le x1$, $y0 \le y$ <= у1, считается залом, если одновременно выполнены следующие условия:

- все клетки области пустые;
- все клетки, непосредственно примыкающие к области, в том числе по диагонали — заполненные камнем, то есть камнем заполнены клетки с координатой x = x0-1 или x1+1 при всех y0-1 <= y <= y1+1, а также координатой y = y0-1 или y1+1 при всех x0-1 <= x <= x1+1.</p>

Из этого, в частности, следует, что зал не может иметь выходов в открытое пространство, то есть все залы расположены минимум в одной клетке от границы карты.

Напишите программу, которая читает 16-ричную запись массива из потока стандартного ввода, пока не наступит ситуация "конец файла", самостоятельно определяет значение N и после этого отыскивает самый большой (по площади, то есть по количеству клеток) зал, удовлетворяющий условиям задачи. В поток стандартного вывода нужно выдать в десятичной системе счисления координаты верхнего левого угла, горизонтальный и вертикальный размеры обнаруженного зала — сначала координату X (номер клетки в ряду), потом координату Y (номер ряда), затем размер зала по горизонтали и по вертикали. Четыре числа печатаются в одну строку и отделяются друг от друга пробелами. Координаты отсчитываются с нуля, начало координат — верхний левый угол пирамиды. При наличии нескольких ответов требуется вывести ответ с минимальной координатой X, при наличии нескольких таких — с минимальной координатой Y. Данная задача может быть решена только на чистом Си или на Паскале.

Примеры

Входные данные

ff89f9afa9e1a9ff

5122

Задача 6

min2048

Однажды поросенок Пётр сел играть в известную компьютерную игру 2048 на поле 4х4. И решил как можно быстрее проиграть, набрав минимальный счет. Помогите ему. Считайте что появление нового числа на поле производится следующем псевдокодом: value = (rand() / (2^31 + 1) < 0.9 ? 2 : 4; x, y = randomAvailableCell();

метод randomAvailableCell - выбор случайной клетки из свободных: AvailableCell[floor((rand() / (2^31 + 1) * AvailableCellCount)

Свободные клетки перечисляются сверху вниз, слева направо

rand() полученние случайного числа линейным конгруэнтным генератором с множителем 1103515245, слагаемым 12345, модулем 2^31 Вам требуется написать программу которая по введенному начальному значению генератора (seed) получит итоговый минимальный счет игры в первой строке и последовательность ходов для его достижения во второй строке. Последовательность ходов задается символами U - вверх, D - вниз, L - влево, R - вправо. Считайте что при тесторовании набор 10 начальных значений генератора 128, 510, 231, 977, 109, 121, 956, 536, 280, 549. Перед первым ходом на поле появляется два числа.

Примеры

Входные данные

128

Результат работы

1234 URLDUDD...

Задача 7

Цифровизация

Расшифруйте

Изображение можно скачать по ссылке https://ejudge.cs.msu.ru/code.png Отправьте зашифрованный текст.

Задача 8

Бинаризация

На стандартном потоке ввода вводится положительное целое число prec (не превышает 150000), затем, отделенная пробельными символами, дробная часть числа в десятичной записи. Длина дробной части числа не превышает 50000 десятичных знаков. Преобразуйте дробную часть числа в десятичной записи в дробную часть числа в двоичной записи с prec двоичными знаками. Округляйте к ближайшему четному.

При выводе дробной части числа разбейте его на группы по 32 бита, дополняя последнюю неполную группу справа нулевыми битами, и выводите каждую группу в шестнадцатеричной записи как показано на примере, разделяя группы пробелом. Если после округления к ближайшему четному число стало равно 1, выведите его, как показано в соответствующем примере.

Если ваша программа получает ошибки выполнения на всех тестах, скорее всего, при ее выполнении она не выполняет ограничения на ресурсы данной задачи.

Примеры

Ввод

5 125

Вывод

20000000

Ввод

40 1

Вывод

19999999 9a000000

Ввод

1 25

Вывод

00000000

Ввод

Вывод

1 00000000

Ввод

8 99

Вывод

fd000000

Ввод

8 999

Вывод