I (очный) этап Всесибирской открытой олимпиады школьников Физика 12 ноября 2017 г. Решения и критерии оценки 9 класс

Рекомендации для жюри

Каждая задача оценивается из 10 баллов. Участники олимпиады могут предложить полные и верные решения, отличные от приведённых ниже. За это они должны получить полный балл. Частичное решение или решение с ошибками оценивается, ориентируясь на этапы решения, приведённые в разбалловке. При этом верные выводы из ошибочных допущений не добавляют баллов. Если какой-то этап решения не полный, или частично правильный, то он оценивается частью баллов за этап. Если в решении участника олимпиады предложенные этапы объединены как один, то оценка проводится из суммарного балла. Наличие ответа без решения не оценивается. В решении в скобках могут быть указаны баллы, они повторяются в таблице разбалловки. Чтобы обеспечить сопоставимость результатов проверки, важно придерживаться этих рекомендаций и буквы и духа предложенных критериев оценки.

В любых вариантах полных и правильных решений обозначенные этапы могут быть представлены в другом порядке и с записью соотношений в другой форме. В комментариях могут быть указания на иные варианты решения или другие замечания, полезные при проверке.

Для удобства работы жюри, каждая задача представлена на отдельной странице.

Решения и критерии оценки 9 класс

1. Двигаясь вниз по течению реки, катер под железнодорожным мостом обогнал плот. Достигнув автомобильного моста, расположенного на расстоянии $L_1=3$ км от железнодорожного, катер быстро развернулся и пошел вверх против течения. Пройдя расстояние $L_2=2$ км, он снова повстречал плот. Определите $U_{\rm P}$ скорость течения реки, если по озеру катер ходит со скоростью $U_{\rm K}=36$ км/ч. Представьте ответ в системе СИ.

Возможное решение

- 1. Скорость плота U_P , скорость катера по течению $U_K + U_P$, против течения $U_K U_P < 1 + 1 + 1$ баллов>.
- 2. Время движения катера от ж/д моста до автомобильного $L_1/(U_{\rm K}+U_{\rm P})$ <1 балл>.
- 3. От автомобильного моста до 2-й встречи с плотом $L_2/(U_{\rm K}-U_{\rm P})$ <1 балл>.
- 4. Время движения плота от 1-й до 2-й встречи с катером $(L_1 L_2)/U_P$ <1 балл>.
- 5. Приравнивание времен движения катера и плота $L_1/(U_{\rm K}+U_{\rm P})+L_2/(U_{\rm K}-U_{\rm P})=(L_1-L_2)/U_{\rm P}<1$ балл>.
- 6. Определение скорости реки $U_P = U_K(L_1 L_2)/(L_1 + L_2) < 2$ балла>.
- 7. Численное значение для скорости в системе СИ $U_P = U_K/5 = 7.2 \text{ км/ч} = 2 \text{ м/c} < 1 \text{ балл} > .$

Разбалловка по этапам решения

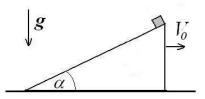
	Этапы решения	Соотношения	Балл
1	Выражение для скоростей плота,	$U_{ m P},~U_{ m K}+U_{ m P},~U_{ m K}-U_{ m P}$	1+1+1
	катера по течению, против течения		
2	Выражение для времени движения	$L_1/(U_{ m K}+U_{ m P})$	1
	катера от ж/д моста до		
	автомобильного		
3	Выражение для времени движения	$L_2/(U_{ m K}-U_{ m P})$	1
	катера от автомобильного моста до		
	2-й встречи с плотом		
4	Выражение для времени движения	$(L_1-L_2)/U_{\mathrm{P}}$	1
	плота от 1-й встречи с катером до 2-й		
5	Приравнивание времен движения	$L_1/(U_{\rm K} + U_{\rm P}) + L_2/(U_{\rm K} -$	1
	катера и плота	$U_{\rm P}$) = $(L_1 - L_2)/U_{\rm P}$	
6	Нахождение скорости реки	$U_{\rm P} = U_{\rm K}(L_1 - L_2)/(L_1 + L_2)$	2
7	Получение числового ответа	$U_{\rm P}=2~{ m m/c}$	1

Комментарии: Участники олимпиады могут сразу подставлять вместо параметров их численные значения.

Решения и критерии оценки 9 класс

2. По дороге регулярно через L=1 км встречаются перекрестки со светофорами. Светофоры на соседних перекрестках переключаются с одинаковым периодом (через одинаковое время), но с некоторой постоянной задержкой друг относительно друга, в режиме «зеленая волна». Найдите максимальное возможное значение периода времени, с которым должен включаться разрешающий сигнал светофоров и необходимое при этом периоде время задержки, чтобы в обе стороны можно было перемещаться по дороге без остановок со скоростью V=60 км/час?

Возможное решение


- 1. Для того, чтобы автомобиль неограниченно долго двигался без остановок, он на каждом из светофоров должен попадать в одну фазу <1 балл>.
- 2. Если задержка переключения соседних светофоров Δt , а зеленый свет включается через время T, то при движении вперед: $t = kT \Delta t$ (1) <2 балла>.
- 3. При движении назад: $t = nT + \Delta t$ (2) <2 балла>.
- 4. При t > 0 $k \ge 1$, $n \ge 0$ <1 балл>.
- 5. Решаем систему уравнений (1), (2) относительно T, Δt при заданном t T = 2t/(n+k), $\Delta t = t(k-n)/(k+n)$. <1 балл>.
- 6. Максимальный период при n = 0, k = 1, T = 2t = 2L/v = 2 мин <2 балла>.
- 7. Время задержки $\Delta t=1$ мин <1 балл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Определение условия движения без		1
	остановок		
2	Определение времени движения	$t = kT - \Delta t$	2
	вперед		
3	Определение времени движения	$t = nT + \Delta t$	2
	назад		
4	Получение условий на k и n	$t > 0$ $k \ge 1$, $n \ge 0$	1
5	Решение системы уравнений	$T = 2t/(n+k), \Delta t = t(k-n)/(k+n)$	1
6	Нахождение максимального периода	n = 0, k = 1, T = 2t = 2L/v = 2	2
7	Нахождение времени задержки	Δt=1мин	1

Решения и критерии оценки 9 класс

3. Небольшое тело массы т лежит на вершине неподвижного клина высотой Η, верхняя плоскость которого наклонена К горизонту под углом α. Клину внезапно придают горизонтальную скорость V_0 которую

поддерживают при его движении. В результате тело отрывается от поверхности. Найти время, через которое тело вновь коснется клина. Ускорение свободного падения g.

Возможное решение

- 1. Тело падает вертикально вниз с ускорением g < 1 балл>.
- 2. За время *t* оно пройдет расстояние $gt^2/2$ (1) <2 балла>.
- 3. За это же время клин проедет расстояние V_0t вправо <1 балл>.
- 4. Плоскость клина под телом опустится на V_0t -tg α (2) <2 балла>.
- 5. Приравнивая (1) и (2), получаем $t = 2V_0 \operatorname{tg}\alpha/g < 2$ балла>.
- 6. Второй корень t = 0 означает исходное положение. Если весь клин успеет выехать, то касания не произойдет <1 балл>.
- 7. На высоту клина есть ограничение $gt^2/2 < H < 1$ балл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Определение характера движения тела		1
2	Нахождение перемещения тела	$gt^2/2$	2
3	Нахождение перемещения клина	V_0t	1
4	Выражение для высоты клина под телом	$V_0 t \cdot tg\alpha$	2
5	Решение системы уравнений	$t = 2V_0 \operatorname{tg}\alpha/g$	2
6	Обсуждение условия $t = 0$		1
7	Ограничение на высоту клина или скорость V_0	$gt^2/2 < H$	1

Комментарии: Решение в системе отсчета клина может быть методически проще.

Решения и критерии оценки 9 класс

4. После того как абсолютно сухую губку положили на воду, она погрузилась наполовину. Когда она полностью пропиталась водой, то 1/6 ее часть осталась непогруженной. Какая часть X от объема сухой губки будет занята водой?

Возможное решение

- 1. Пусть объем губки V, искомая часть объема равна X, плотность вещества, из которого изготовлена губка ρ_{Γ} , плотность воды ρ . Вначале искомый объем VX был занят воздухом, плотностью которого можно пренебречь <1 балл>.
- 2. Равенство силы тяжести и архимедовой силы сухой губки $\rho_{\Gamma}(1-X)V = \rho_{\rm B}V/2$ (1) <2 балла>.
- 3. Равенство силы тяжести и архимедовой силы «намокшей» губки $\rho_{\Gamma}(1-X)V + \rho_{B}XV = 5\rho_{B}V/6$ (2) <3 балла>.
- 4. Вычитая из (2) (1) получим $\rho_B V/2 + \rho_B XV = 5\rho_B V/6 < 2$ балла>.
- 5. Ответ X = 1/3 < 2 балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Корректная постановка задачи		1
2	Баланс сил для сухой губки	$\rho_{\Gamma}(1-X)V = \rho_{\rm B}V/2$	2
3	Баланс сил для «намокшей» губки	$\rho_{\Gamma}(1-X)V + \rho_{\rm B}XV = 5\rho_{\rm B}V/6$	3
4	Получение уравнения на Х	$\rho_{\rm B}V/2 + \rho_{\rm B}XV = 5\rho_{\rm B}V/6$	2
5	Получение ответа	X = 1/3	2

Решения и критерии оценки 9 класс

5. Отрезок провода круглого сечения имел длину L_1 . С помощью молотка и наковальни провод расплющили в тонкую пластинку длины L_2 . Во сколько раз возросло сопротивление провода, если плотность материала и удельное сопротивление не изменились?

Возможное решение

- 1. Для провода, имеющего в любом месте поперечное сечение одинаковой формы и размера, сопротивление R определяется формулой $R = \lambda L/S$ (1) <2 балла>, где λ удельное сопротивление материала, длина провода L, площадь его сечения S.
- 2. Неизменно не только удельное сопротивление, но и плотность, а, следовательно, и объем провода. Пусть площадь сечения круглого провода равняется S_1 , а пластинки S_2 . Равенство объемов дает $L_1S_1 = L_2S_2$ (2) <3 балла>.
- 3. Сопротивление увеличилось в R_2/R_1 раз, именно, с учетом (1) в L_2S_1/L_1S_2 раз (3) <3 балла>.
- 4. Подставляя (2) в (3), получим, что сопротивление увеличилось в $(L_2/L_1)^2$ раз <2 балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Выражение для сопротивления	$R = \lambda L/S$	2
	провода произвольной формы		
2	Указание сохранения объема	$L_1S_1 = L_2S_2$	3
3	Получение выражения для изменения	L_2S_1/L_1S_2	3
	сопротивления		
4	Решение системы уравнений	$(L_2/L_1)^2$	2