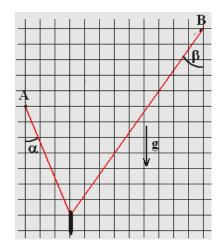
Решения и критерии оценки 9 класс Рекомендации для жюри

Каждая задача оценивается из 10 баллов. Участники олимпиады могут предложить полные и верные решения, отличные от приведённых ниже. За это они должны получить полный балл. Частичное решение или решение с ошибками оценивается, ориентируясь на этапы решения, приведённые в разбалловке. При этом верные выводы из ошибочных допущений не добавляют баллов. Если какой-то этап решения не полный, или частично правильный, то он оценивается частью баллов за этап. Если в решении участника олипиады предложенные этапы объединены как один, то оценка проводится из суммарного балла. Наличие ответа без решения не оценивается. В решении в скобках могут быть указаны баллы, они повторяются в таблице разбалловки. Чтобы обеспечить сопоставимость результатов проверки, важно придерживаться этих рекомендаций и буквы и духа предложенных критериев оценки. В комментариях могут быть указания на иные варианты решения или другие замечания, полезные при проверке.

Для удобства работы жюри, каждая задача представлена на отдельной странице.

Решения и критерии оценки 9 класс



1. На нити длиной L=24 см висит тонкое массивное кольцо, оно может скользить по ней без трения. Концы нити закреплены в точках A и B (их положение указано на рис. точно, а положение кольца условно, сторона квадратной ячейки l=1 см). Найдите углы α и β , образуемые нитью с вертикалью в состоянии равновесия.

Возможное решение

- 1. При отсутствии трения натяжения нити слева и справа от кольца одинаковы <2 балла>.
- 2. Сила тяжести направлена вертикально, из равновесия кольца по горизонтали следует равенство горизонтальных проекций натяжения слева и справа, то есть $Tsin\alpha = Tsin\beta$ и $\alpha = \beta < 1+1$ балл>.
- 3. Находим по клеточкам расстояние между концами нити по горизонтали: x = 12 см <1 балл>.
- 4. Это же расстояние выразим через длины правого и левого участков нити и угол α : $x = L_1 sin\alpha + L_2 sin\alpha = L sin\alpha < 1+1+1$ балл>.
- 5. Отсюда $sin\alpha = x/L = 1/2$, $\alpha = 30^{\circ} < 1+1$ балл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Постоянство натяжения вдоль нити при		2
	отсутствии трения		
2	Равновесие по горизонтали и вывод ра-	$Tsin\alpha = Tsin\beta$ и $\alpha = \beta$	1+1
	венства углов слева и справа от кольца		
3	Нахождение х по рис.	x = 12 cm	1
4	Выражение х через длины и углы	$x=L_1sin\alpha+L_2sin\alpha=Lsin\alpha$	1+1+1
5	Нахождение синуса и искомого угла	$sin\alpha = x/L = 1/2$, $\alpha = 30^{\circ}$	1+1

Решения и критерии оценки 9 класс

2. Микрофоны находятся на концах и посередине прямолинейного отрезка длины 2L. Крайние микрофоны зарегистрировали приход звука от взрыва одновременно, а средний на время т раньше. Найдите расстояния от места взрыва до всех микрофонов, если скорость звука равна с.

Возможное решение

- 1. Из одновременности прихода звука к крайним микрофонам расстояния $r_{\kappa p}$ до них от места взрыва одинаковы, то есть место взрыва находится на срединном перпендикуляре к отрезку длиной 2L < 2 балла>.
- 2. До среднего микрофона звук доходит раньше на время τ , поэтому расстояние r меньше $r_{\text{кр}}$ на $c\tau$; тогда $r_{\text{кр}} = r + c\tau < 1$ балл>.
- 3. Отрезки r, L и $r_{\kappa p}$ это катеты и гипотенуза прямоугольного треугольника, тогда из теоремы Пифагора имеем $r^2 + L^2 = r_{\kappa p}^2 < 2$ балла>.
- 4. Подстановка $r_{\kappa p} = r + c\tau$ даст уравнение для r: $r^2 + L^2 = (r + c\tau)^2$, решение которого $r = (L^2 c^2\tau^2)/2c\tau < 1+2$ балла>.
- 5. Тогда $r_{\kappa p} = r + c\tau = (L^2 + c^2\tau^2)/2c\tau < 2$ балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Вывод о нахождении точки взрыва		2
	на срединном перпендикуляре		
2	Связь расстояний и времени т	$r_{\kappa p} = r + c\tau$	1
3	Применение теоремы Пифагора	$r^2 + L^2 = r_{\kappa p}^2$	2
4	Получение уравнения для г и его	$r^2 + L^2 = (r + c\tau)^2;$	1+2
	решение	$r = (L^2 - c^2 \tau^2)/2c\tau$	
5	Нахождение г _{кр}	$r_{kp} = r + c\tau = (L^2 + c^2\tau^2)/2c\tau$	2

Решения и критерии оценки 9 класс

3. Имеются два кубика одинакового размера из разных материалов. В сосуд налита вода, а сверху масло плотности $\rho = 0.8\rho_0$, где ρ_0 плотность воды. При опускании в сосуд первого кубика он плавает на границе раздела жидкостей, находясь наполовину объёма в воде и наполовину — в масле. Если кубики склеить и опустить в сосуд, то они плавают полностью погрузившись в воду. Выразите плотности материалов кубиков через плотность воды.

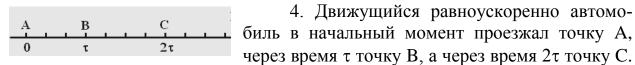
Возможное решение

- 1. Для плавания первого кубика из закона Архимеда следует, что масса кубика равна массе вытесненной жидкости <1 балл>.
- 2. Выразим массу кубика через его плотность и объём $m = \rho_1 V < 1$ балл>.
- 3. Выразим суммарную массу вытесненной жидкости, учтя равенство вытесненных объёмов воды и масла $m = \rho V/2 + \rho_o V/2 < 2$ балла>
- 4. Откуда находим $\rho_1 = (\rho + \rho_0)/2 = 0.9\rho_0 < 2$ балла>.
- 5. В случае плавания склеенных кубиков в воде из закона Архимеда имеем $\rho_1 V + \rho_2 V = 2\rho_o V < 2$ балла>.
- 6. Откуда $\rho_2 = 2\rho_0 \rho_1 = 1, 1\rho_0 < 2$ балла>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Закон Архимеда для плавания 1 кубика	Равенство масс	1
2	Выражение для массы кубика	$m = \rho_1 V$	1
3	Выражение для массы вытесненной жидкости	$m = \rho V/2 + \rho_o V/2$	2
4	Нахождение плотности 1 кубика	$\rho_1 = (\rho + \rho_0)/2 = 0.9\rho_0$	2
5	Закон Архимеда для плавания двух кубиков	$\rho_1 V + \rho_2 V = 2\rho_0 V$	2
6	Нахождение плотности 2 кубика	$\rho_2 = 2\rho_o - \rho_1 = 1, 1\rho_o$	2

Решения и критерии оценки 9 класс



Где он окажется через время 3т от начального момента? Укажите его положение в масштабе, заданном на рисунке.

Возможное решение

- 1. Пусть D искомая точка. Если ускорение a, а v_0 скорость в точке A, то перемещение AD = $3v_0\tau + 9a\tau^2/2 < 2$ балла>.
- 2. Чтобы найти a и v_0 выразим через них данные на рисунке перемещения AB и AC: AB = $v_0 \tau + a \tau^2 / 2$; AC = $2v_0 \tau + 2a \tau^2 < 2$ балла>.
- 3. Отсюда $v_0 \tau = 2AB AC/2$; $a\tau^2/2 = AC/2 AB < 2$ балла>.
- 4. После подстановки в формулу для AD и приведения подобных получим AD = 3(AC AB) = 3BC! < 3 балла>.
- 5. В масштабе рисунка AD = 3BC = 12 делений, искомая точка D в 12 делениях от A или 9 от B, или 5 от C <1 балл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Выражение для искомого перемеще-	$AD = 3v_o \tau + 9a\tau^2/2$	2
	ния через скорость и ускорение		
2	Выражение известных перемещений	$AB = v_0 \tau + a \tau^2 / 2;$	2
	через скорость и ускорение	$AC = 2v_o\tau + 2a\tau^2$	
3	Нахождение скорости и ускорения	$v_o \tau = 2AB - AC/2;$	2
	(аналог)	$a\tau^2/2 = AC/2 - AB$	
4	Нахождение AD	AD = 3(AC - AB) = 3BC!	3
5	Указание положения точки D	D в 12 делениях от A (аналог)	1

Комментарий Могут встретиться варианты решений с рассмотрением других этапов, возможно и более изящные. Скажем, рассматривая сразу перемещение BC участник обнаружит, что средняя скорость на этом участке равна средней скорости на всём пути AD, а тогда очевидно, что AD = 3BC. Возможно решение, использующее график зависимости скорости от времени и то, что площадь подграфика даёт перемещение. Из сравнения «площадей» за время от 0 до 3τ и за время от τ до 2τ получим AD = 3BC. В любом случае за полное и верное решение 10 баллов, хотя какие-то указанные в таблице этапы отсутствуют.

Решения и критерии оценки 9 класс

m T 2m

5. На горизонтальном полу находятся два тела, правое массивней левого в два раза. Тела связаны горизонтальной нерастяжимой нитью, которая рвётся при

натяжении Т. Какую наименьшую силу, направленную вдоль нити, надо приложить к одному из тел, чтобы нить оборвалась? Трения нет.

Возможное решение

- 1. Ускорения тел до разрыва нити из-за неизменности её длины одинаковы <1 балл>.
- 2. Искомую силу находим из условия, что нить ещё не оборвалась, а натяжение её достигло критического значения T <1 балл>.
- 3. Применим 2-й закон Ньютона, если силу F_1 прикладывают к правому телу. Для правого тела: $2ma_I = F_1 T$; для левого $ma_I = T < 2$ балла>.
- 4. Отсюда $F_1 = 3ma_1 = 3T < 1$ балл>.
- 5. Применим 2-й закон Ньютона, если силу F_2 прикладывают к левому телу. Для правого тела: $2ma_2 = T$; для левого $ma_2 = F_2 T < 2$ балла>.
- 6. Отсюда $F_2 = 3ma_2 = 3T/2 < 1$ балл>.
- 7. Наименьшее из F_1 и F_2 даёт искомый ответ: $F = F_2 = 3T/2 < 1$ балл>.

Разбалловка по этапам

	Этапы решения	соотношения	Балл
1	Равенство ускорений до разрыва нити		1
2	Условие достижения критического Т		1
3	2-й закон Ньютона в 1-м случае	$2ma_{I} = F_{1} - T; ma_{I} = T$ аналог	2
4	Нахождение F ₁	$F_1 = 3ma_1 = 3T$	1
5	2-й закон Ньютона во 2-м случае	$2ma_2 = T; ma_2 = F_2 - T$ аналог	2
6	Нахождение F ₂	$F_2 = 3ma_2 = 3T/2$	1
7	Выбор наименьшего	$F = F_2 = 3T/2$	1

Комментарий Возможно применение 2-го закона Ньютона к одному из тел и к системе двух тел, тогда 3ma = F. После чего из найденных по T ускорений берётся меньшее. Количество этапов сократится, но раз это решение верное, то и оценка проводится из того же суммарного балла.