

56-я Всесибирская открытая олимпиада школьников

Заключительный этап 2017-2018 уч. года

Решения заданий по химии

8 класс

Задание 1. (автор В.А. Емельянов).

- **1.** а) Объем трех пузырьков составляет $3*4/3*3,14*(0,5/2)^3 = 0,19625 \approx 0,2$ см $^3 = 0,2$ мл. То есть, скорость подачи газа в этих единицах составляет 0,2 мл/с;
- б) За секунду через трубку проходит $6.02*10^{23}*0.2*10^{-3}/24 = 5.02*10^{18}$ молекул;
- в) В минуту через трубку пройдет $60*3*5,02*10^{18} = 9,04*10^{20}$ атомов;
- г) В час через трубку пройдет $44*60*60*5,02*10^{18}/6,02*10^{23}=1,32$ г газа $(44*60*60*0,2*10^{-3}/24=1,32$ г);
- д) в сутки через трубку пройдет 24*1,32/44 = 0,72 моль газа.
- **2.** Минимальное время 360/0,2=1800 с или 1800/60=30 мин. Эксперимент проводят заметно дольше, поскольку часть углекислого газа уходит в окружающую среду и не получается количественно вытеснить воздух из колбы рассчитанным объемом углекислого газа. Взвешивания проводят до тех пор, пока не совпадут результаты двух-трех последних взвешиваний. Именно последнее значение массы берут в качестве истинного.

Одним взвешиванием обойтись нельзя, поскольку в этом случае нет никакой уверенности в том, что в колбе уже нет воздуха, а есть только углекислый газ.

- 3. В колбе объемом 0.36 л в условиях эксперимента содержится 0.36/24 = 0.015 моль любого газа. Это количество углекислого газа весит 44*0.015 = 0.66 г. Однако, прежде чем сложить это значение с массой колбы, приведенной в задаче, из последней надо вычесть массу находящегося в ней воздуха. Среднее значение молярной массы воздуха 29 г/моль, масса воздуха в колбе 29*0.015 = 0.435 г. Масса колбы с пробкой, полностью заполненной углекислым газом, составит 412.555-0.435+0.66 = 412.78 г.
- **4.** При переворачивании колбы углекислый газ «выливается» из нее, поскольку он тяжелее воздуха. Горящая свеча гаснет, поскольку углекислый газ вытесняет воздух (и, соответственно, кислород) из зоны горения, а сам горение не поддерживает.
- **5.** Буратино увидел, что при пропускании углекислого газа через прозрачную бесцветную известковую воду наблюдается ее помутнение (выпадает осадок, жидкость белеет и т. п.): $Ca(OH)_2 + CO_2 = CaCO_3 \downarrow + H_2O$.

После того, как Буратино отвлекся и снова посмотрел на колбу, он увидел, что количество мути стало уменьшаться (осадок растворяться, жидкость снова стала светлеть и т. п.), поскольку при избытке углекислого газа карбонат кальция растворяется, вновь давая прозрачный бесцветный раствор: $CaCO_{3 \text{ тв.}} + H_2O + CO_2 = Ca(HCO_3)_{2 \text{ p-p}}$.

- **6.** В 1 л известковой воды содержится 1,6 г гашеной извести, то есть $1,6/74 = 0,0216 = 2,16*10^{-2}$ моль, в 0,1 л $-2,16*10^{-3}$ моль. Для максимального проявления первого эффекта (максимальное количество мути) углекислого газа также потребуется $2,16*10^{-3}$ моль. Такое количество газа проходит через трубку за $2,16*10^{-3}/0,72 = 3*10^{-3}$ суток или $60*24*3*10^{-3} = 4,32$ мин или 259,2 с. Чтобы увидеть окончание второго эффекта (растворился весь карбонат кальция), нужно как минимум еще столько же CO_2 , т. е. еще столько же времени. Всего потребуется 2*4,32 = 8,64 мин или 518,4 с.
- 7. а) С углекислым газом не реагируют: соляная кислота, оксид азота(II), кислород, оксид меди(II).
- б) С углекислым газом реагируют: оксид бария, уголь (при нагревании), оксид натрия, металлический магний (при нагревании). Уравнения реакций: $BaO + CO_2 = BaCO_3$;

$$C + CO_2 \xrightarrow{t, {}^{\circ}C} 2CO; Na_2O + CO_2 = Na_2CO_3; 2Mg + CO_2 \xrightarrow{t, {}^{\circ}C} 2MgO + C$$
 (или CO).

8. В лаборатории углекислый газ обычно получают действием соляной кислоты на мрамор: $CaCO_3 + 2HCl = CaCl_2 + CO_2 \uparrow + H_2O$. Можно использовать и другие кислоты с карбонатами, однако важно, чтобы образующаяся в ходе реакции соль была хорошо растворима, а кислота была

достаточно сильной, если исходный карбонат растворим плохо.

Углекислый газ используется в пищевой промышленности (консервант, разрыхлитель, производство газированных напитков), химической промышленности (производство соды) для заполнения огнетушителей, для заполнения баллончиков в пневматическом оружии, в качестве хладагента («сухой лед») в лабораторных исследованиях и розничной торговле и т. п.

Система оценивания:

системи оценивиния.	
1. Каждый расчет скорости в других единицах по 1 б.	$1 \times 5 = 5 6.$
2. Расчет времени 1 б., потери газа (диффузия, конвекция, перемешивание и т.п.) 1 б., до совпадения взвешиваний 1 б., нет контроля 1 б	1 ×4 = 4 б.
3. Расчет массы колбы с CO ₂ 4 б. (масса CO ₂ 2 б., мысль об учете массы воздуха 1 б, расчет массы воздуха 1 б.)	4 б.
4. Погасла 1 б., не поддерживает горение (изолирует от O_2) 1 б.	$1 \times 2 = 2 6$.
5. Осадок (помутнение) и его растворение по 0,5 б., уравнения реакций по 1 б.	$0.5 \times 2 + 1 \times 2 = 3 6.$
6. Расчет времени первого эффекта 2 б., второго 1 б. (за ответ, что времени потребуется еще столько же, ставится 1 б.)	2+1=3 6.
7. Верное указание «реагирует/не реагирует» по $0,5$ б. (неверное — штраф минус $0,5$ б, но в целом за пункт 7 не меньше 0 б), уравнения реакций по 1 б.	$0.5 \times 8 + 1 \times 4 = 8 6.$
8. Верное для способа получения уравнение реакции 1 б., два примера по 0,5 б.	$1+0.5\times 2=2$ 6.
Всего	31 балл

Задание 2. (авторы А.И. Ушеров, В.А. Емельянов)

- **1.** Попробуем представить формулу магнетита как Fe_xO_y , тогда $\omega_{Fe} = 55,85x/(55,85x+16y) = 0,7236$. Отсюда x = 0,75y. Так как x и y могут быть только целыми числами, то наименьшие числа: x = 3, y = 4, следовательно, формула магнетита Fe_3O_4 . Такое вещество действительно существует, по классификации относится к основным оксидам (можно просто оксид). Если формула представлена в виде $Fe(FeO_2)_2$ то допускается ответ соль.
- **2.** Пусть масса концентрата 100 г, тогда в нём содержится второго элемента 0,5 г. Чтобы найти массу пирротина, поделим массу второго элемента на его массовую долю в пирротине. Получим массу пирротина в 100 г концентрата или, иначе говоря, массовую долю пирротина в концентрате $\omega_{\text{пир}} = 0.5/(1-0.6357) = 0.5/0.3643 = 1.372$ %.
- В 100 г концентрата содержится 60,5 г железа. Масса железа от пирротина составит 1,372 * 0,6357 = 0,872 г, следовательно, масса железа от магнетита 60,5-0,872 = 59,628 г, а содержание магнетита в концентрате составит $\omega_{\text{магн.}}$ = 59,628/0,7236 = 82,4%.
- **3.** Представим формулу пирротина Fe_xA_y , где x и y могут быть только целыми числами, а элемент A неметалл (если знать элементы, входящие в состав пирита, то расчет сильно упростится).

Атомную массу A примем за Z, тогда $\omega_{Fe} = 55,85x/(55,85x+yZ) = 0,6357$. x = 0,03124yZ. Z = 32x/y. Единственное разумное решение получается при x = 1, y = 1, Z = 32. Следовательно, элемент A – это сера, значит формула пирротина FeS. По классической классификации это соль, но можно отнести его и к классу сульфидов, восстановителей и даже оснований.

- **4.** Уравнения реакций: a) $Fe_3O_4 + 8HCl = FeCl_2 + 2FeCl_3 + 4H_2O$, $FeS + 2HCl = FeCl_2 + H_2S\uparrow$.
- **5.** Метасиликат кальция $CaSiO_3$, ортосиликат кальция Ca_2SiO_4 , метаалюминат магния $Mg(AlO_2)_2$.

В метасиликате кальция $\omega_{CaO} = M_{CaO}/M_{CaSiO3} = 56/116 = 0,483$ или 48,3 %,

в ортосиликате $\omega_{\text{CaO}} = 2M_{\text{CaO}}/M_{\text{Ca2SiO4}} = 112/172 = 0,651$ или 65,1 %.

Уравнения реакций:

 $Ca_2SiO_4 + 4HCl + (n-2)H_2O = 2CaCl_2 + SiO_2*nH_2O\downarrow$ (или $H_4SiO_4\downarrow$ или $H_2SiO_3\downarrow + H_2O$), $Mg(AlO_2)_2 + 8HCl = 2AlCl_3 + MgCl_2 + 4H_2O$.

6. Уравнение реакции: $CaCO_3 \xrightarrow{t, {}^{\circ}C} CaO + CO_2 \uparrow$.

В 100 кг концентрата содержится $m_{CaO} = 0.3$ кг и $m_{SiO2} = 5$ кг.

Примем массу добавленного известняка за x кг. Масса CaO, вносимого с известняком, составит $m_{\text{CaO}}^{\text{изв.}} = x^* M_{\text{CaO}} / M_{\text{CaCO3}} = x^* 56/100 = 0,56x$ кг.

Тогда общая масса CaO в агломерате будет равна $m_{CaO}^{\text{агл.}} = m_{CaO} + m_{CaO}^{\text{изв.}} = 0,3+0,56x$ кг, а масса SiO₂ в агломерате $m_{SiO2}^{\text{агл.}} = 5$ кг.

По условию, $\mathbf{B} = 1.7 = \omega_{\text{CaO}}^{\text{агл.}}/\omega_{\text{SiO2}}^{\text{агл.}} = m_{\text{CaO}}^{\text{агл.}}/m_{\text{SiO2}}^{\text{агл.}} = (0.3+0.56x)/5$, откуда x = 14.6. К 100 кг концентрата нужно добавить 14,6 кг известняка.

7. Так как массовая доля коксика в аглошихте составляет 0,042, то $m_{\text{кокс.}}/(100+m_{\text{кокс.}})=0,042$. Масса коксика, которую следует добавить к 100 кг смеси, составит $m_{\text{кокс.}}=100*0,042/(1-0,042)=4,38$ кг.

Уравнение реакции: $C + O_2 \xrightarrow{t, {}^{\circ}C} CO_2$ (или CO).

Система оценивания:

1. Определение формулы магнетита, подтверждённой расчётом 2 б. (без подтверждения 1 б.), класс соединения 1 б.	2+1=3 6.
2. Расчёт массовых долей магнетита и пирротина в концентрате по 2 б.	$2 \times 2 = 4 6$.
3. Формула пирротина с расчетом 2 б. (без расчета 1 б.), класс 1 б.	2+1=3 6.
4. Уравнения реакций по 1 б.	$1 \times 2 = 2 6$.
5. Формулы по 1 б., содержание CaO по 2 б., уравнения реакций по 1 б.	$1 \times 3 + 2 \times 2 + 1 \times 2 = 9 6$.
6. Уравнение реакции 1 б., расчет массы известняка 3 б.	1+3=46.
7. Уравнение реакции 1 б., расчет массы коксика 2 б.	1+2=36.
Всего	28 баллов

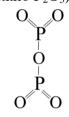
Задание 3. (авторы А.В. Задесенец, В.А. Емельянов)

- **1.** Уравнение реакции деления 235 U: $^{235}_{92}$ U + $^{1}_{0}$ n = $^{145}_{56}$ Ba + $^{89}_{36}$ Kr + 2^{1}_{0} n.. Отношение мощностей взрывов $50*10^{6}/15*10^{3} = 3.33*10^{3}$.
- **2.** Изотопы водорода: ${}^{1}H$ протий, ${}^{2}H$ (символ D) дейтерий, ${}^{3}H$ (символ T) тритий.
- **3.** По описанию газ **Y** очень похож на водород, но расчет молярной массы газа **Y** дает нам значение $29 \cdot 0,103 = 3,0$ г/моль. Такое возможно, если в составе газа **Y** один атом водорода (протия 1 H) из воды, другой (дейтерия $D \equiv ^2$ H) из $_3^6 Li_1^2 H$. То есть **Y** это HD дейтероводород. При горении дейтероводорода, как и при горении водорода обычного, получится вода HDO (**Z**), в которой один из атомов водорода замещен на дейтерий. Такую воду называют полутяжелой (или просто тяжелой) водой. Вещество $_3^6 Li_1^2 H$ (**X**) дейтерид лития-6.
- **4.** Уравнения реакций: LiH + H₂O \rightarrow LiOH + H₂↑ [1]; LiH + HCl \rightarrow LiCl + H₂↑ [2]; 2H₂ + O₂ \rightarrow 2H₂O [3]; 2LiH + O₂ \rightarrow 2LiOH (Li₂O + H₂O) [4]; 2LiH \rightarrow 2Li + H₂↑ [5].
- **5.** Уравнения ядерных реакций: ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n + Q$, ${}_{3}^{6}Li_{1}^{2}H \longrightarrow {}_{2}^{4}He + Q в$ общем виде. Реакция идет в 2 стадии: ${}_{3}^{6}Li + {}_{0}^{1}n \longrightarrow {}_{1}^{3}H + {}_{2}^{4}He + Q$, ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n + Q$.
- 6. Сахаров Андрей Дмитриевич.

Система оценивания:

Системи оценивания.	
1. Символ 1 б., отношение мощностей 1 б.	1+1=2 6.
2. Названия по 0,5 б., символы по 0,5 б.	$0.5 \times 3 + 0.5 \times 2 = 2.5 \delta.$
3. Формулы Y и Z по 1 б. (H_2 и H_2O по 0,5 б.), дейтероводород, тяжелая (полутяжелая) вода, дейтерид лития по 1 б. (водород, вода и гидрид лития по 0,5 б.)	$1 \times 2 + 1 \times 3 = 5 6.$
4. Уравнения реакций по 1 б. (засчитываются как с LiD, так и с LiH)	$1 \times 5 = 5 6$.
5. Уравнения ядерных реакций по 2 б.	$2 \times 2 = 4 6$.
6. Фамилия, имя и отчество по 0,5 б.	$0.5 \times 3 = 1.5 6.$
Всего	20 баллов

Задание 4. (автор Н.В. Рубан).


1. В задаче говорится о простом веществе, способном светиться в темноте. Этому условию удовлетворяет фосфор, в чем можно убедиться и с помощью расчета.

Обозначим атомную массу элемента **X** за m. Массовая доля элемента **X** во фторапатите составляет 18,45 %, следовательно, 3*m/(5*40+3*(m+64)+19) = 0,1845. Отсюда получаем m = 31, что соответствует атомной массе фосфора. Отсутствие самородного фосфора в природе принято связывать с его легкой окисляемостью и вообще высокой химической активностью.

- 2. Три общепринятые аллотропные модификации фосфора: белый (правильным ответом так же считать жёлтый), красный и чёрный (фиолетовый). Еще есть менее известный металлический фосфор. Наибольшую химическую активность проявляет белый фосфор.
- **3.** Уравнение реакции окисления белого фосфора на воздухе: $P_4 + 5O_2 \rightarrow P_4O_{10}$ (правильным так же считать P_2O_5 , P_2O_3 , P_4O_6). Обычно белый фосфор хранят под слоем воды или в инертной атмосфере. Ответы «под слоем масла или любого органического растворителя» не засчитываются в связи с растворимостью белого фосфора в неполярных растворителях.
- **4.** Объем фосфора на морде собаки можно вычислить по формуле $V = \pi r^2 * h$, где πr^2 площадь круга (в нашем случае площадь морды собаки), h высота (толщина слоя фосфора). Таким образом, $V_P = 3.14*100*0.1 = 31.4$ см³. Массу фосфора вычисляем по формуле $m_P = V_P * \rho = 31.4*1.82 = 57.2$ г. Тогда, за час собака съест 57.2*0.1 = 5.72 г фосфора, что намного превышает летальную дозу. Следовательно, собака получит летальную дозу меньше, чем через час после нанесения состава, что делает невозможным его применение.
- **5.** Если собака съедает за час примерно 5,7 г фосфора, это соответствует 5,7/60 = 0,095 г/мин. Следовательно, собака съест летальную дозу за 0,15/0,095 = 1,6 мин.
- **6.** Фосфор находится в V группе ПС, следовательно, его высший оксид **B** имеет формулу P_2O_5 (или, что более грамотно, P_4O_{10}). При взаимодействии **B** с водой образуется ортофосфорная кислота H_3PO_4 : $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$.

Вещество С (Н₃РО₄):

8. Уравнения реакций: $H_3PO_4 + NaOH (1 экв.) \rightarrow NaH_2PO_4$ (соль **D**) + H_2O ;

 $NaH_2PO_4 + NaOH (1 экв.) \rightarrow Na_2HPO_4$ (соль **E**) + H_2O ;

 $Na_2HPO_4 + NaOH (1 экв.) \rightarrow Na_3PO_4 (соль$ **F** $) + H_2O.$

Вещества **D** и **E** относят к классу кислых солей.

9. Героя, вымышленного Конан Дойлем, зовут Шерлок Холмс.

Система оценивания:

1. Определение элемента Х с расчетом 2 б. (без расчета 1 б.), активность 1 б.	2+1=3 6.
2. Три модификации по 0,5 б., самая активная 0,5 б.	$0.5 \times 3 + 0.5 = 2 6.$
3. Уравнение реакции 1 б., способ хранения 1 б.	1+1=2 6.
4. Расчет массы 3 б., невозможность применения с расчетом 1 б., без расчета	3+1=46.
0,5 ő.	J + I = 70
5. Расчет времени 1 б.	1 б.
6. Формулы веществ В и С по 0,5 б., уравнение реакции 1 б.	$0.5 \times 2 + 1 = 2 6.$
7. Структурные формулы веществ B и C по 1 б.	$1 \times 2 = 2 6.$
8. Уравнения реакций по 1 б., класс кислых солей 1 б.	$1 \times 3 + 1 = 4 6.$
9. Шерлок Холмс 1 б.	1 б.
Всего	21 балл