

56-я Всесибирская открытая олимпиада школьников

Заключительный этап 2017-2018 уч. года

Решения заланий по химии

11 класс

Задание 1. (авторы Э.С. Сапарбаев, В.Н. Конев).

1-3. Взаимодействие одноосновной карбоновой кислоты (Y) со спиртом – реакция этерификации, приводящая к образованию сложного эфира (соединения X). Эту реакцию обычно проводят в присутствии катализатора и водоотнимающего средства – концентрированной серной кислоты H_2SO_4 (**Z**). Установим примерную молекулярную массу эфира **X**: $M_r(\mathbf{X}) = 4.5 \cdot 29 \sim 131$ г/моль. Учитывая молекулярную формулу изоамилового спирта ($C_5H_{11}OH$), а также то, что при реакции этерификации отщепляется молекула воды, найдем примерную молекулярную массу карбоновой кислоты Y: $M_r(Y) \sim 131 + 18 - 88 \sim 61$ г/моль. Среди одноосновных предельных карбоновых кислот наиболее близким значением молекулярной массы обладает уксусная кислота CH_3COOH . Структурные формулы изоамилового спирта, соединений **X** (изоамилацетат) и **Y** (уксусная кислота):

- 4. Температура плавления безводной уксусной кислоты ~17 °C. При меньшей температуре безводная уксусная кислота превращается в бесцветные кристаллы, по внешнему виду похожие на кристаллы обычного льда. Именно поэтому ее называют "ледяной".
- **5.** a обратный холодильник (холодильник Димрота); b насадка Дина-Старка; b круглодонная колба; Γ — нагревательная плитка; д — «кипелки».

«Кипелки» добавляют в колбу для того, чтобы смесь равномерно кипела (они являются центрами кипения). Если их не добавить, то может образоваться перегретая жидкость, которая кипит «толчками», выплескиваясь из колбы в другие части прибора.

6. Рассчитаем количество исходных изоамилового спирта и уксусной кислоты:
$$\nu(C_2H_4O_2)=\frac{57,1\cdot 1,05}{60,1}=1 \text{ моль}; \ \nu(C_5H_{12}O)=\frac{163,1\cdot 0,81}{88,2}=1,5 \text{ моль}.$$

Поскольку при образовании изоамилацетата в реакции этерификации участвуют эквимолярные количества спирта и кислоты, расчет теоретического количества эфира необходимо проводить по количеству кислоты. Т. е., теоретически должно было быть получено 1 моль эфира или 1 моль \cdot 130,2 г/моль = 130,2 г. Воды должно было образоваться 1 моль · 18 г/моль = 18 г, но выделилось всего 15 г, следовательно, выход в реакции составил 15 г / 18 г = 0,833 или ≈ 83 %. Таким образом, изоамилацетата образовалось 130,2 г \cdot 0,833 \approx 110 г.

7. Схемы синтеза бутилбутирата:

Систома опоннеания.

еистеми оценивания.	
1. Структурные формулы спирта, кислоты и эфира по 1 б.,	$1 \times 3 = 3 6$.
подтверждение расчетом 2 б, названия кислоты и эфира по 1 б.	$2+1\times 2=46$.
2. Формула (название) кислоты Z 1 б., катализатор и водоотнимающее средство по $0,5$ б.	$1+0.5\times 2=2$ 6.
3. Название упомянутой реакции 1 б.	1 б.
4. Объяснение названия "ледяная" 1 б.	1 б.
5. Названия частей установки по 1 б., функция кипелок 1 б.	$1 \times 5 + 1 = 6 6$.
6. Расчет выхода эфира и массы X по 2 б.	$2 \times 2 = 4 6.$
7. Схемы синтеза с условиями по 2 б. (без условий по 1 б.)	2x3 = 6 6.
Всего	27 баллов

Задание 2. (авторы А.И. Ушеров, В.А. Емельянов)

- **1.** Минералы железных руд это в основном оксиды. Попробуем представить формулу магнетита как Fe_rO_v , тогда $\omega_{\text{Fe}} = 55,85x/(55,85x+16y) = 0,7236$. Отсюда x = 0,75y. Так как x и y могут быть только целыми числами, то наименьшие числа: x = 3, y = 4, следовательно, формула магнетита Fe_3O_4 . Такое вещество действительно существует, его структура соответствует Fe(FeO₂), структурный тип – шпинель (см. п. 5 условия).
- 2. Пусть масса концентрата 100 г, тогда в нём содержится второго элемента 0.5 г. Чтобы найти массу пирротина, поделим массу второго элемента на его массовую долю в пирротине. Получим массу пирротина в 100 г концентрата или, иначе говоря, массовую долю пирротина в концентрате $\omega_{\text{пир}} = 0.5/(1-0.6357) =$ 0.5/0.3643 = 1.372 %.
- В 100 г концентрата содержится 60.5 г железа. Масса железа от пирротина составит 1.372*0.6357 = 0.872 г, следовательно, масса железа от магнетита 60,5-0,872 = 59,628 г, а содержание магнетита в концентрате составит $\omega_{\text{магн.}} = 59,628/0,7236 = 82,4\%$.
- **3.** Представим формулу пирротина Fe_xA_y , где x и y могут быть только целыми числами, а элемент A неметалл. Атомную массу А примем за Z, тогда $\omega_{Fe} = 55.85x/(55.85x+yZ) = 0.6357$. x = 0.03124yZ. Z = 32x/y. Единственное разумное решение получается при x = 1, y = 1, Z = 32. Следовательно, элемент A – это сера, значит формула пирротина FeS. По классической классификации это соль, но можно отнести его и к классу сульфидов, восстановителей и даже оснований.
- **4.** Уравнения реакций: a) $Fe_3O_4 + 8HCl = FeCl_2 + 2FeCl_3 + 4H_2O$, $FeS + 2HCl = FeCl_2 + H_2S\uparrow$;
- 6) $Fe_3O_4 + 10HNO_{3 \text{ KOHIL}} = 3Fe(NO_3)_3 + NO_2 \uparrow + 5H_2O_3$
- $3\text{FeS} + 30\text{HNO}_{3 \text{ конц.}} = \text{Fe}_2(\text{SO}_4)_3 + \text{Fe}(\text{NO}_3)_3 + 27\text{NO}_2 \uparrow + 15\text{H}_2\text{O}$ или
- $FeS + 12HNO_{3 \text{ KOHII.}} = Fe(NO_3)_3 + H_2SO_4 + 9NO_2 \uparrow + 5H_2O.$
- B) $Fe_3O_4 + 5Cl_2 + 16NaOH = 3Na_2FeO_4 + 10NaCl + 8H_2O_4$
- $FeS + 6Cl_2 + 16NaOH = Na_2FeO_4 + Na_2SO_4 + 12NaCl + 8H_2O.$
- **5.** Метасиликат кальция $CaSiO_3$, ортосиликат кальция Ca_2SiO_4 , диортосиликат алюминия $Al_2Si_2O_7$, метаалюминат магния — $Mg(AlO_2)_2$.

Уравнения реакций: a) $Al_2Si_2O_7 + 6HCl + (2n-3)H_2O = 2AlCl_3 + 2SiO_2*nH_2O \downarrow (2H_2SiO_3 \downarrow + H_2O)$,

 $Mg(AlO_2)_2 + 8HCl = 2AlCl_3 + MgCl_2 + 4H_2O$; 6) $Al_2Si_2O_7 + 6NaOH + H_2O = 2Na[Al(OH)_4] + 2Na_2SiO_3$ (Na₄SiO₄), $Mg(AlO_2)_2 + 2NaOH + 4H_2O = 2Na[Al(OH)_4] + Mg(OH)_2 \downarrow$.

6. Уравнение реакции: $CaCO_3 \xrightarrow{t, {}^{\circ}C} CaO + CO_2 \uparrow$. В 100 кг концентрата содержится $m_{CaO} = 0.3$ кг и $m_{SiO2} = 5$ кг.

Примем массу добавленного известняка за x кг. В нём содержится 0.95x кг $CaCO_3$. Масса CaO_3 вносимого с известняком, составит $m_{CaO}^{\text{изв.}} = 0.95x*M_{CaO}/M_{CaCO3} = 0.95x*56/100 = 0.532x$ кг, а масса SiO_2 $m_{SiO_2}^{\text{изв.}} = 0.95x*56/100$ 0.05*0.5*x = 0.025x KT.

Тогда общая масса CaO в агломерате будет равна $m_{CaO}^{\text{агл.}} = m_{CaO} + m_{CaO}^{\text{изв.}} = 0,3+0,532x$ кг, а масса SiO₂ в агломерате $m_{SiO2}^{\text{агл.}} = m_{SiO2} + m_{SiO2}^{\text{изв.}} = 5 + 0.025 x$ кг.

По условию, $\mathbf{B}=1,7=\omega_{\text{CaO}}^{\text{агл.}}/\omega_{\text{SiO2}}^{\text{агл.}}=m_{\text{CaO}}^{\text{агл.}}/m_{\text{SiO2}}^{\text{агл.}}=(0,3+0,532x)/(5+0,025x),$ откуда x=16,75. К 100 кг концентрата нужно добавить 16,75 кг известняка.

7. Так как массовая доля коксика в аглошихте составляет 0,042, то $m_{\text{кокс}}/(100+m_{\text{кокс}}) = 0,042$. Масса коксика, которую следует добавить к 100 кг смеси, составит $m_{\text{кокс.}} = 100*0,042/(1-0,042) = 4,38$ кг.

Уравнение реакции: $C + O_2 \xrightarrow{t, {}^{\circ}C} CO_2$ (или CO).

8. Масса агломерата складывается из масс концентрата, остатка от известняка (надо вычесть улетевший углекислый газ или сложить массы, приходящиеся в известняке на оксид кальция и пустую породу) и золы коксика. Масса остатка от известняка составит

Масса коксика, необходимая на 100 кг смеси 4,38 кг, тогда на 116,75 кг его потребуется 4,38*1,1675 = 5,11 кг. Золы от него останется 0.12*5.11 = 0.61 кг. $m_{arm.} = 100+9.75+0.61 = 110.36$ кг.

Система оценивания:

1. Определение формулы магнетита, подтверждённой расчётом 1 б. (без подтверждения 0,5 б.), структурный тип 0,5 б.	1+0.5=1.5 6.
2. Расчёт массовых долей магнетита и пирротина в концентрате по 2 б.	$2 \times 2 = 4 6$.
3. Формула пирротина с расчетом 1 б. (без расчета 0,5 б.), класс 0,5 б.	1+0.5=1.5 6.
4. Уравнения реакций по 1 б.	$1 \times 6 = 6 6$.
5. Формулы по 0,5 б., уравнения реакций по 1 б.	$0.5 \times 4 + 1 \times 4 = 6 6$.
6. Уравнение реакции 1 б., расчет массы известняка 3 б.	1+3=46.
7. Уравнение реакции 1 б., расчет массы коксика 2 б.	1+2=36.
8. Расчет массы агломерата 3 б. (остаток от известняка 2 б., зола 1 б.)	3 6.
Всего	29 баллов

Задание 3. (авторы А.В. Задесенец, В.А. Емельянов)

- **1.** Уравнение реакции деления 235 U: $^{235}_{92}$ U + $^{1}_{0}$ n = $^{145}_{56}$ Ba + $^{89}_{36}$ Kr + 2^{1}_{0} n.
- 2. Столь малое значение молярной массы (8 г/моль) приводит набору из трех самых легких элементов: Н, Не и Li. Кроме того, **X** – сложное вещество, т. к. простых веществ с такой молярной массой нет, а оно еще и на чтото разлагается согласно [5]. Гелий соединений не образует, поэтому его можно смело отбросить. Отсюда можно заключить, что X – гидрид лития LiH (M = 8 г/моль), который реагирует с водой с образованием водорода. Действительно, по описанию газ Y очень похож на водород, но расчет молярной массы газа Y дает нам значение 29.0,103 = 3,0 г/моль. Такое возможно, если в составе газа **Y** один атом водорода (протия 1 H) – из воды, другой (дейтерия $D \equiv {}^2H$) — из вещества **X**. Тогда для сохранения молярной массы 8 г/моль мы должны использовать литий-6. То есть вещество $\mathbf{X} - \frac{6}{3}Li_1^2H$ – дейтерид лития-6, а \mathbf{Y} – это HD - дейтероводород. При горении дейтероводорода, как и при горении водорода обычного, получится вода НОО (Z), в которой один из атомов водорода замещен на дейтерий. Такую воду называют полутяжелой (или просто тяжелой) водой.
- **3.** Уравнения реакций: LiH + $H_2O \rightarrow LiOH + H_2 \uparrow [1]$; LiH + $HCl \rightarrow LiCl + H_2 \uparrow [2]$; $2H_2 + O_2 \rightarrow 2H_2O$ [3]; $2LiH + O_2 \rightarrow 2LiOH$ ($Li_2O + H_2O$) [4]; $2LiH \rightarrow 2Li + H_2 \uparrow$ [5].
- **4.** Уравнения реакций: LiH + Cl₂ \rightarrow LiCl + HCl; LiH + NH₃ \rightarrow LiNH₂ + H₂; 3LiH + SO₂ \rightarrow Li₂S + H₂O + LiOH или $6LiH + 3SO_2 \rightarrow 2Li_2S + Li_2SO_3 + 3H_2O$; $2LiH + B_2H_6 \rightarrow 2LiBH_4$; $3LiH + N_2 \rightarrow Li_3N + NH_3$.
- 5. Для создания требуемых условий сначала производится взрыв обычного ядерного заряда.
- **6.** Уравнения ядерных реакций: ${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n + Q$, ${}_{3}^{6}Li_{1}^{2}H \longrightarrow {}_{2}^{4}He + Q$ в общем виде. Реакция идет в 2 стадии: ${}_{3}^{6}Li+{}_{0}^{1}n\longrightarrow {}_{1}^{3}H+{}_{2}^{4}He+Q$, ${}_{1}^{2}H+{}_{1}^{3}H\longrightarrow {}_{2}^{4}He+{}_{0}^{1}n+Q$.
- 7. Частицы ${}^{4}He$, выделяющиеся в ядерных реакциях, называются α -частицы. Поскольку в момент выделения они имеют заряд 2+, α-частицы обладают исключительно сильными окислительными свойствами.
- 8. Сахаров Андрей Дмитриевич.

Система оценивания:

Cuchichu ouchion.	
1. Символ 1 б.	1 б.
2. Формулы X , Y и Z по 1 б. (LiH, H_2 и H_2O по 0 б.), расчеты (подтверждение) 2 б., дейтерид лития-6, дейтероводород, тяжелая (полутяжелая) вода по 1 б. (гидрид лития, водород и вода по 0 б.)	$1 \times 3 + 2 + 1 \times 3 = 8 6.$
3. Уравнения реакций по 1 б. (засчитываются как с LiD, так и с LiH)	$1 \times 5 = 5 6$.
4. Уравнения реакций по 1 б. (засчитываются как с LiD, так и с LiH)	$1 \times 5 = 5 6$.
5. Подрыв обычного ядерного заряда 1 б.	1 б.
6. Уравнения ядерных реакций по 2 б.	$2 \times 2 = 4 6$.
7. Название 0,5 б., свойства 1 б.	0.5+1=1.5 6.
8. Фамилия, имя и отчество по 0,5 б.	$0.5 \times 3 = 1.5 \delta.$
Всего	27 баллов

Задание 4. (автор Н.В. Рубан).

1. В задаче говорится о простом веществе, способном светиться в темноте. Этому условию удовлетворяет фосфор, в чем можно убедиться и с помощью расчета.

Обозначим атомную массу элемента **X** за m. Массовая доля элемента **X** во фторапатите составляет 18,45 %, следовательно, 3*m/(5*40+3*(m+64)+19) = 0,1845. Отсюда получаем m = 31, что соответствует атомной массе фосфора.

Отсутствие самородного фосфора в природе принято связывать с его легкой окисляемостью и вообще высокой химической активностью.

- **2.** Уравнение реакции окисления белого фосфора на воздухе: $P_4 + 5O_2 \rightarrow P_4O_{10}$ (правильным так же считать P_2O_5 , P_2O_3 , P_4O_6). Обычно белый фосфор хранят под слоем воды или в инертной атмосфере. Ответы «под слоем масла или любого органического растворителя» не засчитываются в связи с растворимостью белого фосфора в неполярных растворителях.
- **3.** Объем фосфора на морде собаки можно вычислить по формуле $V = \pi r^2 * h$, где πr^2 площадь круга (в нашем случае площадь морды собаки), h высота (толщина слоя фосфора). Тогда $V_P = 3,14*100*0,1=31,4$ см³. Массу фосфора вычисляем по формуле $m_P = V_P * \rho = 31,4*1,82=57,2$ г.

За час собака съест 57,2*0,1=5,72 г фосфора, что намного превышает летальную дозу. Следовательно, собака получит летальную дозу меньше, чем через час после нанесения состава, что делает невозможным его применение.

- **4.** Если собака съедает за час примерно 5.7 г фосфора, это соответствует 5.7/60 = 0.095 г/мин. Следовательно, собака съест летальную дозу за 0.15/0.095 = 1.6 мин.
- **5.** Уравнение реакции: $4\text{Ca}_5(\text{PO}_4)_3\text{F} + 18\text{SiO}_2 + 30\text{C} \xrightarrow{t, {}^{\circ}\text{C}} 3\text{P}_4 \uparrow + 18\text{CaSiO}_3 + 30\text{CO} \uparrow + 2\text{CaF}_2.$
- **6.** Уравнения реакций: $P_4 + 6Mg \rightarrow 2Mg_3P_2$ (вещество **B**); $Mg_3P_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2PH_3$ (**C**);
- $2P_4 + 3Ba(OH)_2 + 6H_2O \rightarrow 3 Ba(H_2PO_2)_2 + 2PH_3 (C); 4PH_3 + 8O_2 \rightarrow 6H_2O \uparrow + P_4O_{10} (P_2O_5) (\textbf{D});$
- $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ (E); $5PH_3 + 8KMnO_4 + 12H_2SO_4 \rightarrow 5H_3PO_4$ (E) $+ 8MnSO_4 + 4K_2SO_4 + 12H_2O$;
- $P_4 + 10Cl_2 \rightarrow 4PCl_5$ (**F**); $PCl_5 + H_2O \rightarrow 2HCl + POCl_3$ (**J**), $POCl_3 + 3C_2H_5OH \rightarrow 3HCl + PO(OC_2H_5)_3$ (**H**).
- **7.** Возгонка (сублимация) переход вещества из твердого состояния сразу в газообразное, минуя жидкое. Такие превращения, как возгонка, плавление, испарение и другие переходы из одной фазы в другую без изменения химического состава вещества, относятся к фазовым переходам.

Основываясь на результатах эксперимента детектива, вычислим молекулярную массу вещества ${\bf D}$ в газовой фазе. Из уравнения Менделеева-Клапейрона найдем количество вещества: ${\bf n}={\rm PV/RT}=0.914*0.02/(633*0.082)=0.000352$ моль.

Отсюда $M(\mathbf{D}_{\text{газ}}) = 0,1/0,000352 = 284$ г/моль, что соответствует молекулярной формуле P_4O_{10} и следующей структурной формуле (структурная формула для P_2O_5 **не** засчитывается):

8. Героя, вымышленного Конан Дойлем, зовут Шерлок Холмс.

Система оценивания:

1. Определение элемента X с расчетом 2 б. (без расчета 1 б.), активность 1 б.	2+1=3 6 .
2. Уравнение реакции 1 б., способ хранения 1 б.	1+1=2 6.
3. Расчет массы 2 б., невозможность применения с расчетом 1 б., без расчета 0,5 б.	2+1=3 6.
4. Расчет времени 1 б.	1 б.
5. Уравнение реакции 2 б.,	2 б.
без коэффициентов (все продукты реакции правильные) 1 б.	2 0.
6. Формулы веществ B-H по 0,5 б., уравнения реакций по 1 б.	$0.5 \times 7 + 1 \times 9 = 12.5 6.$
7. Фазовый переход 0,5 б., расчет молекулярной массы 1 б., структурная формула вещества \mathbf{D} 1 б.	0.5+1+1=2.5 6.
8. Шерлок Холмс 1 б.	1 б.
Всего	27 баллов