

54-я Всесибирская открытая олимпиада школьников Первый отборочный этап 2015-2016 уч. года

Решения заданий по химии

11 класс

Задача 1. (авторы И. А. Заякин, М. А. Ильин).

1. Элемент, являющийся основой всего живого, — это углерод. В состав молекул воды входят кислород и водород. Более легким элементом является водород. Рассчитаем соотношение атомов элементов в соединениях **A** и **B**: C : H : O = 52,1/12:13,1/1:34,8/16=2:6:1, т.е. простейшая формула веществ C_2H_6O . По условию плотность паров этих соединений по воздуху не превышает 2, т.е. молекулярная масса не должна превышать $2 \cdot 29 = 58$ а.е.м., что не противоречит найденной простейшей формуле ($M_r = 46$ а.е.м.). Тогда молекулярная формула соединений **A** и **B** – C_2H_6O .

2. Вещество А реагирует как с Na, так и с PBr₃ – это этанол. Уравнения реакций:

 $2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2\uparrow [1]; 3C_2H_5OH + PBr_3 \rightarrow 3C_2H_5Br + H_3PO_3 [2].$

Изомер \mathbf{F} — диметиловый эфир — $(CH_3)_2O$ — он не реагирует ни с натрием, ни с трибромидом фосфора. При взаимодействии \mathbf{F} с концентрированной иодоводородной кислотой, взятой в недостатке, образуются метилиодид ($\mathbf{\Gamma}$) и метанол (\mathbf{B}) (который реагирует с металлическим натрием подобно этанолу с выделением водорода и образованием метилата натрия ($\mathbf{\Pi}$)). Реакция между алкоголятом (соединение $\mathbf{\Pi}$) и первичным алкилгалогенидом (соединение $\mathbf{\Gamma}$) — наиболее известный синтез простых эфиров "по Вильямсону" — в данном случае, — диметилового эфира (\mathbf{F}).

Уравнения реакций: $(CH_3)_2O + HI \rightarrow CH_3OH + CH_3I$ [3]; $CH_3ONa + CH_3I \rightarrow (CH_3)_2O + NaI$ [4].

- 3. У этанола температура кипения выше, чем у диметилового эфира из-за того, что между молекулами спирта имеются прочные водородные связи.
- **4.** Этанол при нагревании в присутствии катализатора ZnO/MgO (синтез Лебедева) превращается в бутадиен-1,3 (**E**). При озонолизе и последующем гидролизе (в окислительной среде, т.е. в отсутствие цинковой пыли) бутадиена-1,3 образуется щавелевая кислота (**Ж**), которая при обработке тионилхлоридом превращается в соответствующий хлорангидрид (**3**, $C_2O_2Cl_2$). Взаимодействие хлорангидрида **3** с избытком аммиака приводит к образованию диамида щавелевой кислоты (**И**), который после восстановления (с помощью Li[AlH₄]) превращается в этилендиамин (**K**, $C_2H_8N_2$).

При кипячении этанола с раствором $KMnO_4$ в сернокислой среде образуется уксусная кислота (Π), которая в присутствии красного фосфора подвергается монохлорированию в α -положение с образованием 1-хлоруксусной кислоты (\mathbf{M} , $C_2H_3O_2Cl$). Взаимодействие этилендиамина (\mathbf{K}) с α -хлоруксусной кислотой (\mathbf{M}) в мольном соотношении 1:4 приводит к образованию этилендиаминтетрауксусной кислоты (\mathbf{X}), динатриевая соль которой широко используется в аналитической химии под названием "трилон Б". Структурные формулы соединений \mathbf{E} - \mathbf{M} и \mathbf{X} .

Система оценивания:

- 2. Соединения A-Д (названия и/или формулы) по 1 б, уравнения реакций по 1 б 16*5+16*4=9 б;
- 4. Структурные формулы соединений **E-M** и **X** по 1 б, название **X** 1 б 16*8+16=9 б;

Задача 2. (автор В. А. Емельянов).

1. Перманганат калия — $KMnO_4$, глицерин — $C_3H_5(OH)_3$. При окислении глицерина, как и любого органического вещества, должны образовываться CO_2 и H_2O . Бурая смесь, судя по цвету, содержит нерастворимый в воде MnO_2 , и, судя по вскипанию, растворимые в воде K_2CO_3 и $KHCO_3$.

Уравнения реакций: $14\text{KMnO}_4 + 3\text{C}_3\text{H}_5(\text{OH})_3 = 5\text{K}_2\text{CO}_3 + 4\text{KHCO}_3 + 14\text{MnO}_2 + 10\text{H}_2\text{O}^\uparrow$ или $14\text{KMnO}_4 + 3\text{C}_3\text{H}_5(\text{OH})_3 = 7\text{K}_2\text{CO}_3 + 14\text{MnO}_2 + 2\text{CO}_2^\uparrow + 12\text{H}_2\text{O}^\uparrow$;

$$K_2CO_3 + H_2SO_4 = K_2SO_4 + H_2O + CO_2$$
.

2. Для приготовления смеси используют $1/56 \approx 0,02$ моль железа и $4/101 \approx 0,04$ моль нитрата калия, т.е. их стехиометрическое соотношение 1:2. Бесцветный газообразный продукт реакции, буреющий на воздухе, безусловно, NO. После мысленного удаления 2NO из смеси $2KNO_3$ +Fe остается состав K_2O_4 Fe, который как раз соответствует феррату калия K_2 FeO₄ (отсюда и название вулкана). На ту же мысль наталкивают и красно-фиолетовый раствор, и образование осадка, похожего на сульфат бария, и выделение хлора в реакции с соляной кислотой.

Уравнения реакций: $2KNO_3 + Fe = 2NO^{\uparrow} + K_2FeO_4$; $2NO + O_2 = 2NO_2$;

$$K_2FeO_4 + Ba(NO_3)_2 = BaFeO_4 \downarrow + 2KNO_3$$
; $2K_2FeO_4 + 16HCl = 4KCl + 2FeCl_3 + 3Cl_2 \uparrow + 8H_2O$.

- **3.** $(NH_4)_2Cr_2O_7$ дихромат аммония. Уравнение реакции: $(NH_4)_2Cr_2O_7 = N_2 + 4H_2O + Cr_2O_3$. При разложении 5 г, т.е. 5/252 = 0.02 молей дихромата аммония получится 0.02 моля оксида хрома и 0.02 + 4*0.02 = 0.1 моль газовой смеси, состоящей из азота и водяных паров. Масса оксида хрома составит 0.02*151 = 3 г, суммарный объем газов V = vRT/P = 0.1*0.082*(1000+273)/1 = 10.4 л.
- **4.** Формула уксусной кислоты CH_3COOH , образующаяся соль называется ацетат натрия. Уравнение реакции: $NaHCO_3 + CH_3COOH = CH_3COONa + H_2O + CO_2 \uparrow$. В 2 чайных ложках соды ее содержится около 10 г, т.е. 10/84 = 0,12 моля $NaHCO_3$. Углекислого газа получится тоже 0,12 моля, его объем (как и объем пены) при атмосферном давлении и комнатной температуре составит примерно V = vRT/P = 0.12*0.082*(25+273)/1 = 2.9 л.

Система оценивания:

- 2. Формулы продуктов по 0.5 б, феррат калия 0.5 б, уравнения реакций по 1 б . 0.56*3+16*4=5.5 б;
- 3. Название 0,5 б, уравнение реакции 1 б, масса Cr_2O_3 2 б, объем газа 2 б 0,56+16+26+26=5,5 б;
- 4. Формула кислоты 0.5 б, название соли 0.5 б, уравнение реакции 1 б,

Задача 3. (авторы В. Н. Конев, В. А. Емельянов).

1. Из условий получения веществ **A** и **B** понятно, что они содержат только фосфор и хлор. Тогда посчитаем соотношения количества атомов элементов в формулах, взяв по 100 г вещества:

A: n(P): n(Cl) = m(P)/M(P): m(Cl)/M(Cl) = (100-77,45)/31: 77,45/35,5 = 0,727: 2,182 = 1: 3. Формула вещества PCl_3 – трихлорид фосфора (хлорид фосфора(III), хлористый фосфор).

 \mathbf{B} : $\mathbf{n}(P)$: $\mathbf{n}(Cl) = \mathbf{m}(P)/\mathbf{M}(P)$: $\mathbf{m}(Cl)/\mathbf{M}(Cl) = (100-85,13)/31$: 85,13/35,5 = 0,480: 2,40 = 1: 5. Формула вещества PCl_5 — пентахлорид фосфора (хлорид фосфора(V), хлорный фосфор).

Вещества C и D по условиям получения могут содержать фосфор, хлор, серу и кислород. Поскольку про вещество D известно, что оно состоит из тех же элементов, что и F, а вещество F в реакции с водой дает смесь соляной и серной кислот (см. условие), следовательно, в состав D и F входят сера, хлор и, возможно, кислород. Тогда в состав C обязательно входят фосфор и хлор, а также, возможно, кислород. В состав E могут входить хлор, углерод и кислород. Попробуем вычислить их формулы:

С: Поскольку молекулярная масса С не менее 118 а.е.м., то на хлор в этом веществе приходится не менее 0,6936*118 = 81,8 а.е.м. Следовательно, оно содержит не менее 81,8/35,5 = 2,3 атомов хлора. Если в состав молекулы входит 3 атома хлора, то ее масса 35,5*3/0,6936 = 153,5 а.е.м., из которых 35,5*3 = 106,5 приходится на хлор. Остается 153,5-106,5 = 47 а.е.м., что соответствует одному атому фосфора и одному атому кислорода. Таким образом, формула вещества $POCl_3$ — оксид-трихлорид фосфора (хлорид фосфорила, хлористый фосфорил, хлорокись фосфора).

D: Если в состав молекулы входит 1 атом хлора, то ее масса 35,5/0,596 = 59,6 а.е.м., из которых 35,5 приходится на хлор. Остается 59,6-35,5 = 24,1 а.е.м., что меньше атомной массы серы. Если в состав молекулы входит 2 атома хлора, то ее масса 35,5*2/0,596 = 119,1 а.е.м., из которых 71 приходится на хлор. Остается 119,1-71 = 48,1 а.е.м., что с приемлемой точностью (неточность связана с округлением атомных масс) соответствует одному атому серы и одному атому кислорода. Таким образом, формула вещества $SOCl_2$ — оксид-дихлорид серы (хлорид тионила, хлористый тионил).

Е: Если в состав молекулы входит 1 атом хлора, то ее масса 35,5/0,7168 = 49,5 а.е.м., из которых 35,5 приходится на хлор. Остается 49,5-35,5 = 14 а.е.м., что заметно (на 2 а.е.м.) больше атомной массы углерода. Если в состав молекулы входит 2 атома хлора, то ее масса 35,5*2/0,7168 = 99 а.е.м., из которых 71 приходится на хлор. Остается 99-71 = 28 а.е.м., что соответствует одному атому углерода и одному атому кислорода. Таким образом, формула вещества $COCl_2$ — оксид-дихлорид углерода (хлорид карбонила, хлористый карбонил, хлорокись углерода, фосген). (Поскольку в условии есть плотность газа при $20\,^{\circ}$ С, можно сразу вычислить его молекулярную массу: M = (m/V)*(RT/P)).

F: Если в состав молекулы входит 1 атом хлора, то ее масса 35,5/0,5253 = 67,6 а.е.м., из которых 35,5 приходится на хлор. Остается 67,6-35,5 = 32,1 а.е.м., что почти совпадает с атомной массы серы. Однако, нам известно, что вещества **D** и **F** состоят из одних и тех же элементов, следовательно, в состав **F** должен входить еще и кислород. Если в состав молекулы входит 2 атома хлора, то ее масса 35,5*2/0,5253 = 135,16 а.е.м., из которых 71 приходится на хлор. Остается 135,16-71 = 64,16 а.е.м., что с приемлемой точностью соответствует одному атому серы и двум атомам кислорода. Таким образом, формула вещества SO_2Cl_2 — диоксид-дихлорид серы (хлорид сульфурила, хлористый сульфурил).

2. Уравнения описанных реакций получения веществ **A-E**: $2P + 3Cl_2 \xrightarrow{t, \circ C} 2PCl_3$; $PCl_3 + Cl_2 \xrightarrow{t, \circ C} PCl_5$;

$$\operatorname{PCl}_5 + \operatorname{SO}_2 \xrightarrow{t,{}^{\circ}\mathsf{C}} \operatorname{POCl}_3 + \operatorname{SOCl}_2; \operatorname{CO} + \operatorname{Cl}_2 \xrightarrow{\mathsf{C}_{\mathsf{AKT}}, \, h \, \nu} \operatorname{COCl}_2.$$

3. Уравнение реакции вещества **F** с водой, приводящей к образованию смеси серной и соляной кислот: $SO_2Cl_2 + 2H_2O = H_2SO_4 + 2HCl$.

Как же получить вещество \mathbf{F} , да еще и исходя из новых знаний, полученных при чтении этой задачи? Поскольку теперь мы знаем про реакцию присоединения хлора к окиси углерода с образованием $COCl_2$, ничто не мешает нам предположить, что также можно получить и SO_2Cl_2 :

 $SO_2 + Cl_2 \xrightarrow{C_{akt}, h \nu} SO_2Cl_2$. Собственно, так его обычно и получают. (Если предложена реакция PCl_5 с SO_3 , то ее тоже нужно зачесть, т. к. ее тоже можно предположить, прочитав условие задачи).

4. Исходя из условия, при взаимодействии веществ **A-E** с водой должна получаться смесь двух кислот (кроме тех случаев, когда кислота сразу разлагается): $PCl_5 + 4H_2O = H_3PO_4 + 5HCl$;

$$PCl_{3} + 3H_{2}O = H_{3}PO_{3} + 3HCl; POCl_{3} + 3H_{2}O = H_{3}PO_{4} + 3HCl; SOCl_{2} + H_{2}O = SO_{2} + 2HCl; POCl_{3} + 3H_{2}O = H_{3}PO_{4} + 3HCl; POCl_{3} + 3H_{2}O = H_{3}PO_{4} + 3HCl; POCl_{3} +$$

 $COCl_2 + H_2O = CO_2 + 2HCl.$ (За H_2SO_3 и H_2CO_3 здесь ставится половина баллов).

5. Строение и геометрия молекул:

6. Для всех веществ, кроме **B**, в твердом состоянии реализуется молекулярная кристаллическая решетка. А у **B** кристаллическая решетка ионная, в ее узлах находятся катионы $[PCl_4^+]$ и $[PCl_6^-]$:

- 7. Молярная масса PCl_5 составляет 208,5 г/моль, следовательно, для растворения взяли 4,17/208,5 = 0,02 моля пентахлорида фосфора. По уравнению реакции гидролиза **B** образуется 0,1 моль HCl и 0,02 моля H_3PO_4 . Концентрация HCl 1 моль/л, концентрация H_3PO_4 0,2 моль/л. Диссоциация фосфорной кислоты в этих условиях идет менее, чем на 0,7 %, т.к. $7 \cdot 10^{-3} = 1 \cdot [H_2PO_4]/[H_3PO_4]$, поэтому ее вкладом в pH можно пренебречь. Тогда в полученном растворе $pH = -lg[H^+] \approx -lg1 = 0$.
- **8.** Количество вещества в сосудах, которое пропорционально количеству молекул, считается как отношение массы вещества к его молекулярной массе: v = m/M. Чтобы посчитать массу вещества, надо умножить его плотность (в r/cm^3) на объем (cm^3), который у всех веществ одинаковый. Поэтому достаточно сравнить отношения ρ/M , чтобы дать ответ на поставленный вопрос.

Более того, ответ о наименьшем количестве молекул очевиден без расчетов: это сосуд, содержащий газообразное вещество \mathbf{E} , плотность которого (4,12 г/л = 0,00412 г/см³) на 3 порядка меньше плотности остальных веществ.

Вычислим отношения ρ /М для остальных веществ: 1,57/137,5 = 0,0114 (**A**); 2,1/208,5 = 0,0101 (**B**); 1,65/153,5 = 0,0107 (**C**); 1,64/119 = 0,0138 (**D**); 1,67/135 = 0,0124 (**F**). Получается, что наибольшее число молекул содержится в сосуде с веществом **D**.

9. Структурные формулы:

Система оценивания:

1. Молекулярные формулы веществ А-F по 1 б, названия по 0,5 б	$(16+0.56)*6 = 9 6;$
2. Уравнения реакций по 1 б	16*4 = 4 6;
3. Уравнение реакции 1 б, способ получения 2 б	16+26=36;
4. Уравнения реакций по 1 б	16*5 = 5 6;
5. Строение по 0,5 б, названия фигур по 0,5 б	$(0,56+0,56)*5 = 5 6;$
6. Типы решетки по 1 б, формулы и геометрия частиц по 0,5 б	$16*2+(0.56+0.56)*2=46$;
7. Оценка рН 3 б	3 б;
8. Наименьшее – в сосуде с Е, наибольшее – в сосуде с D по 1 б	$16*2 = 2 6;$
9. Структурные формулы по 1 б	16*3 = 3 6;
Всего	38 баллов

Задача 4. (автор В. Н. Конев).

1. Структурные формулы А-Д:

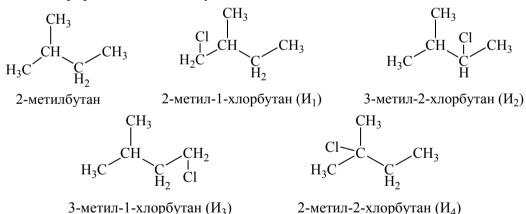
2. Структурные формулы 2,2,4-триметилпентана и его монохлопроизводных:

2,2,4-триметилпентан 2,2,4-триметил-1-хлорпентан (H_1) 2,2,4-триметил-3-хлорпентан (H_2)

2,2,4-триметил-4-хлорпентан ($И_3$) 2,4,4-триметил-1-хлорпентан (I_4)

3. Определим относительные скорости монохлорирования по вторичным (x) и третичным (y) атомам водорода. Общая скорость по всем атомам будет $W_{\Sigma} = 15 \cdot 1 + 2 \cdot x + 1 \cdot y$.

Тогда $W(\mathcal{U}_1) = 0.29 = 9 \cdot 1/(15 \cdot 1 + 2 \cdot x + 1 \cdot y)$. Отсюда $2x + y + 15 = 9/0.29 = 31.0 = W_{\Sigma}$.


$$W(H_2) = 0.28 = 2 \cdot x/(15 \cdot 1 + 2 \cdot x + 1 \cdot y)$$
. Отсюда $2x + y + 15 = 2x/0.28 = 7.14x = W_{\Sigma}$.

$$W(H_3) = 0.23 = 1 \cdot y/(15 \cdot 1 + 2 \cdot x + 1 \cdot y)$$
. Отсюда $2x + y + 15 = y/0.23 = 4.35y = W_{\Sigma}$.

$$W(H_4) = 0.20 = 6 \cdot 1/(15 \cdot 1 + 2 \cdot x + 1 \cdot y)$$
. Отсюда $2x + y + 15 = 6/0.20 = 30.0 = W_{\Sigma}$.

Видно, что W_{Σ} , полученные из значений $W(H_1)$ и $W(H_4)$ различаются на единицу, что связано с ошибками округления (состав продуктов в условии приведен всего с двумя значащими цифрами). Для дальнейших вычислений логичнее использовать среднее значение $W_{\Sigma}=30,5=7,14x=4,35y$. Отсюда x=4,3 (относительная скорость хлорирования по вторичным атомам водорода), а y=7,0 (относительная скорость хлорирования по третичным атомам водорода).

4. Продукты монохлорирования 2-метилбутана:

Используя данные об относительных скоростях монохлорирования при той же температуре, найденные в п. 3, найдем состав продуктов галогенирования 2-метилбутана:

$$W(H_1) = 6 \cdot 1/(9 \cdot 1 + 2 \cdot 4, 3 + 1 \cdot 7) = 0.24 (24\%);$$

$$W(H_2) = 2.4,3/24,6 = 0.35 (35\%);$$

$$W(H_3) = 3 \cdot 1/24, 6 = 0,12 (12\%);$$

$$W(\text{M}_4) = 1.7/24,6 = 0.29 (29\%).$$

Система оценивания:

- 2. Структурные формулы 2,2,4-триметилпентана и производных по 0,5 б 0,56*5=2,5 б;
- 4. Структурные формулы по 0.5 б, названия по 0.5 б, % состав по 1 б (0.56+0.56+16)*4=8 б;