

51-я Всесибирская открытая олимпиада школьников Первый отборочный этап 2012-2013 уч. года Решения заданий по химии

9 класс

Задание 1. (Автор Емельянов В.А.)

- **1.** При заполнении кроссворда нам помогут общие знания об окружающих нас предметах, их составе и роли химических элементов в жизни человека. Там, где возможны варианты, нам поможет количество букв (1 медь или алюминий), метод исключения (3 кремний или водород), здравый смысл (8 серебро или платина), а также необходимость получить в одном из столбцов известное ключевое слово.
- **2.** Полный правильный ответ на этот вопрос единственный, однако следует иметь в виду, что при ответе на каждый пункт возможны варианты, каждый из которых следует засчитывать (но одно уравнение и один элемент засчитываются только один раз):
- а) Подходят элементы, проявляющие валентность IV, т.е. это элементы IV группы и сера: C, Si, S, Pb;
- б) Элемент, образующий простое вещество с двухатомной молекулой, в атмосфере которого горит фосфор только \mathbf{O} ;
- в) Металл с валентностью I, дающий нерастворимый хлорид, в таблице растворимости только один $-\mathbf{A}\mathbf{g}$;
- г) Подходят элементы, проявляющие валентность II, т.е. Cu, C, Fe, Pb;
- д) Смешанные оксиды такого состава есть у **Fe и Pb**;
- е) Из перечисленных элементов нерастворимый сульфат с валентностью ІІ имеет только Рь;
- ж) Неметаллом, не образующим двухатомных молекул, является только S;
- 3) Подходят металлы, проявляющие валентность II, расположенные в ряду напряжений правее Fe: Cu, Pb;
- и) Элемент, образующий простое вещество с двухатомной молекулой, образующий оксид с валентностью I. только **H**.

Поскольку Si оказался только в пункте а); в пункте е) только Pb; в пункте ж) только S и т.д., методом исключения получаем единственный полностью верный ответ:

				_	_			_
1.				M	E	Д	Ь	
	У	Γ	Л	E	P	0	Д	
К	P	E	M	Н	И	Й		•
		В	O	Д	0	P	0	Д
			C	E	P	A		
	К	И	C	Л	0	P	0	Д
	Ж	E	Л	E	3	0		
	C	E	P	E	Б	P	0	
		-	C	В	И	Н	E	Ц
Иноновоз оново Манианава претав Повисанию								

2. a)
$$Si + O_2 \xrightarrow{t, {}^{\circ}C} SiO_2;$$

б)
$$4P + 5\mathbf{O}_2 \xrightarrow{\text{горение}} 2P_2\mathbf{O}_5$$
;

B)
$$AgNO_3 + NaCl \rightarrow NaNO_3 + AgCl \downarrow$$
;

$$\Gamma$$
) 2C + $O_{2(\text{недостаток})}$ — горение \longrightarrow 2CO;

д)
$$3\mathbf{Fe} + 2\mathbf{O}_2 \xrightarrow{\Gamma \text{ орение}} \mathbf{Fe}_3\mathbf{O}_4;$$

e)
$$Pb(NO_3)_2 + Na_2SO_4 \rightarrow 2NaNO_3 + PbSO_4 \downarrow$$
;

ж) Fe + S
$$\xrightarrow{t,^{\circ} C}$$
 FeS;

3)
$$\operatorname{CuCl}_2 + \operatorname{Fe} \to \operatorname{Cu} \downarrow + \operatorname{FeCl}_2$$
;

и)
$$2\mathbf{H}_2 + \mathbf{O}_2 \xrightarrow{\Gamma \text{ орение}} 2\mathbf{H}_2 \mathbf{O}$$
.

Ключевое слово – Менделеев, автор Периодической системы химических элементов

Система оценивания:

- 1. Названия элементов 1 δ * 9, слово 1 δ , связь слова с элементами 1 δ _______9 δ + 1 δ + 1 δ = 11 δ ;
- 2. Уравнение реакции, подходящее для элемента
 1 6 * 9 = 9 б;

 Всего
 20 баллов

Задание 2. (Авторы Конев В.Н., Емельянов В.А.)

- **1.** Уравнения реакций: $C + H_2O = CO + H_2$ [1]; $CH_4 + H_2O = CO + 3H_2$ [2];
- $2NaCl + 2H_2O = 2NaOH + H_2 + Cl_2$ [3], $2H_2O = 2H_2 + O_2$ [4]; $CO + H_2O = CO_2 + H_2$ (реакция сдвига).
- **2.** $C_2H_4 + H_2O = C_2H_5OH$ [5].
- **3.** Бензин: $C_8H_{18} + 12,5O_2 = 8CO_2 + 9H_2O$. $Q_{crop.} = 9Q_{oбp}(H_2O) + 8Q_{oбp}(CO_2) Q_{oбp}(C_8H_{18}) 12,5Q_{oбp.}(O_2) = 9*242 + 8*394 208 12,5*0 = 2178 + 3152 208 0 = 5122 кДж/моль.$

Водород: $H_2 + 0.5O_2 = H_2O$. $Q_{crop.}(H_2) = Q_{oбp.}(H_2O) = 242$ кДж/моль.

Если коэффициенты и тепловые эффекты для C_8H_{18} и H_2 в 2 раза больше, то это верные ответы.

Этанол: $C_2H_5OH + 3O_2 = 2CO_2 + 3H_2O$. $Q_{crop.} = 3Q_{oбp.}(H_2O) + 2Q_{oбp.}(CO_2) - Q_{oбp.}(C_2H_5OH) = 3*242 + 2*394 - 235 = 726 + 788 - 235 = 1279 кДж/моль.$

Биодизель: $C_{19}H_{36}O_2 + 27O_2 = 19CO_2 + 18H_2O$. $Q_{crop.} = 18Q_{oбp.}(H_2O) + 19Q_{oбp.}(CO_2) - Q_{oбp.}(C_{19}H_{36}O_2) = 18*242 + 19*394 - 1304 = 4356 + 7486 - 1304 = 10538$ кДж/моль.

4. Бензин (октан): $n(C_8H_{18}) = 1000(cm^3)*0.703(г/см^3)/114(г/моль) \approx 6.17$ моль, тепла при сгорании выделится $Q(C_8H_{18}) = 5122*6.17 = 31602.74$ кДж ≈ 31.6 МДж.

Водород: $n(H_2) = 1000(cm^3)*0,07(г/cm^3)/2(г/моль) = 35$ моль, тепла при сгорании выделится $Q(H_2) = 242*35 = 8470 \text{ кДж} \approx 8,5 \text{ МДж}.$

Спирт: $n(C_2H_5OH) = 1000(cm^3)*0,789(г/сm^3)/46(г/моль) \approx 17,15$ моль, тепла при сгорании выделится $O(C_2H_5OH) = 1279*17,15 = 21934,85$ кДж ≈ 21.9 МДж.

Биодизель: $n(C_{19}H_{36}O_2) = 1000(cm^3)*0,879(г/сm^3)/296(г/моль) \approx 2,97$ моль, тепла при сгорании выделится $Q(C_{19}H_{36}O_2) = 10538*2,97 = 31297,86$ кДж $\approx 31,3$ МДж.

5. Для поездки из Новосибирска до Москвы потребуется $10\pi^*3500$ км/100км = 350 л бензина, т.е. на эту поездку потребовалось 31,6 МДж*350 = 11060 МДж энергии. Тогда водорода понадобится 11060/8,5 = 1301 л, спирта 11060/21,9 = 505 л, биодизеля 11060/31,3 = 353 л.

Система оценивания:

Задание 3. (Автор Емельянов В.А.)

- **1.** Формулы соединений металла **M**, производимых на заводе: нитрит MNO_2 , нитрат MNO_3 , сульфат M_2SO_4 , гидросульфат $MHSO_4$, хлорат $MClO_3$, перхлорат $MClO_4$, фторид MF, гидроксид MOH, дигидрофосфат MH_2PO_4 , перманганат $MMnO_4$.
- **2. Медь красная**, **золото желтое**. Благородным металлом является золото, следовательно, **М** имеет **желтый** цвет. Цвет всех остальных металлов обычно характеризуют как **серебристо-серый**.
- **3.** Устойчивый атом с массой с 137 легко обнаруживается в ΠC это барий. Соответственно, **M**, предшествующий барию в ΠC , это **цезий**, представляющий семейство **щелочных** металлов.
- **4.** Уравнения реакций: $Cs + O_2 = CsO_2$ (9 кл можно Cs_2O); $2Cs + 2H_2O = 2CsOH + H_2\uparrow$;
- $2Cs + 2HCl = 2CsCl + H_2\uparrow$; $2Cs + Br_2 = 2CsBr$; $2Cs + S = Cs_2S$; $2Cs + H_2 = 2CsH$; $2Cs + I_2 = 2CsI$;
- $4Cs + SiO_2 = 2Cs_2O + Si$ (недостаток песка) или $4Cs + 3SiO_2 = 2Cs_2SiO_3 + Si$ (избыток песка).
- **5.** Минимальное содержание **M** в поллуците будет при x=0,5, максимальное при x=0,7. Посчитаем массовую долю **M** в минерале при разных x, t. е. отношение массы **M** к молярной массе: ω = 133x/(133x + 23(1-x) + 27 + 2*28 + 6*16 + 18) = <math>133x/(110x + 220). Для x = 0,5 получаем ω_{min} = 0,242, для x = 0,7 получаем ω_{max} = 0,313. Минимальное значение массы металла **M**, содержащегося в 3 т поступившего на завод поллуцита 0,242*3 = 0,726 т или **726** кг, максимальное 0,313*3 = 0,939 т или **939** кг.

Система оценивания:

1. Формулы соединений по 0,5 б	0.5 6 * 10 = 5 6,
2. Металлы 0,5 б *2, цвета 0,5 б * 4	1 6 + 2 6 = 3 6,
3. Цезий 1 б, щелочные металлы 1 б	
4. Уравнения реакций по 1б	
5. Расчет значений массы по 1б	
Всего	20 баппое

Задание 4. (Авторы Задесенец А.В., Емельянов В.А.)

- **1.** Формулы названных веществ: Cl_2 , $KMnO_4$, HCl, H_2SO_4 . Через склянку с концентрированной серной кислотой хлор пропускают, чтобы избавиться от паров воды, «высушить» хлор.
- **2.** Дашу и Гошу сначала удивило отклонение полученных цифр от реальной молярной массы хлора. А, сверив ответы, поразились они тому, что у Гоши эта масса получилась больше, чем у Даши. Ведь масса Гошиной пипетки с хлором была заметно меньше, чем Дашиной, значит, кто-то из них все же ошибся в расчетах.

Давайте эти расчеты проверим. В условиях опыта в пипетке содержится 0,48/24 = 0,02 моля газа, следовательно, Дашин хлор был почти чистым, то есть считала она неправильно. У Гоши в пипетке было 0,0136 моля хлора (M = 70,9 г/моль) и 0,02-0,0136 = 0,0064 моля воздуха (M = 29 г/моль). Средняя молярная масса газа в его пипетке (0,0136*70,9+0,0064*29)/0,02 = 57,5 г/моль, т.е. Гошин расчет верен. У Даши должно было получиться (0,0199*70,9+0,0001*29)/0,02 = 70,7 г/моль, что отличается от ее ответа на 70,7-41,5 = 29,2 г/моль – подозрительно близко к средней молярной массе воздуха. Интересно, а как бы Вы считали молярную массу полученного газа? Надо вычесть из массы пипетки с хлором массу пипетки и разделить на количество молей газа, так? Даша так и сделала: (151,43-150,60)/0,02 = 41,5! Действительно, Даша допустила типовую ошибку (не арифметическую!): не учла, что пустую пипетку она взвешивала совсем не пустую, а с воздухом, масса которого внутри пипетки составляет 0,02*29 = 0,58 г. Это и привело к отличию ее результата от правильного на 29 г/моль, и к меньшей расчетной молярной массе, чем у Гоши, несмотря на более чистый хлор в ее пипетке.

- **3.** Объемные доли газов, благодаря закону Авогадро, совпадают с мольными долями, поэтому считаются легко: доля хлора у Даши 0,0199/0,02 = 0,995 или 99,5 %, у Гоши 0,0136/0,02 = 0,68 или 68 %. Газы тяжелее воздуха следует собирать в пипетку, вытесняя воздух вверх, присоединив шланг от прибора к низу пипетки, как очевидно, поступила Даша, получив в результате практически чистый хлор. Если сделать наоборот, то тяжелый газ будет опускаться вниз быстрее воздуха, перемешиваясь с ним, и не заполнит пипетку полностью, что и получилось у Гоши. А вот газы, которые легче воздуха (в частности, водород), следует собирать в пипетку, вытесняя воздух вниз, т.е. присоединив шланг от прибора к верху пипетки. Следовательно, водород на предыдущем занятии получал и собирал Гоша.
- **4.** Уравнение реакции получения хлора: $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 \uparrow + 8H_2O$. Бурый налет, не смывающийся водой, это нерастворимый в воде диоксид марганца, получающийся изза неполного восстановления перманганата калия при его избытке:

 $2KMnO_4 + 3MnCl_2 + 2H_2O \rightarrow 2KCl + 5MnO_2 \downarrow + 4HCl$ или

 $2KMnO_4 + 8HCl \rightarrow 2KCl + 2MnO_2 \downarrow + 3Cl_2 \uparrow + 4H_2O.$

Отмыть его можно конц. соляной кислотой или подкисленным раствором перекиси водорода:

 $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$ или $MnO_2 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + O_2 \uparrow + 2H_2O$.

Система оценивания:

- 1. Формулы соединений по 1 б, осушка 1 б (очистка от примесей θ б)_______1 $\delta * 4 + 1$ $\delta = 5$ б;
- 2. Отклонение от теории 1 б, меньшая молярная масса при большей массе пипетки 1 б, неправильный расчет только у Даши 1 б (ответ «у обоих» 0 б), повторение расчетов 1 б * 2, указание на то, что не учтена масса воздуха в пустой пипетке у Даши 1 б,
- указание на то, что у Гоши остался воздух 1 б 1 6*7=7 б; 3. Объемные доли хлора по 1 б, пипетка снизу у Даши 1 б, H_2 получал Гоша 1 б, 1 6*4=4 б;