Поволжская открытая олимпиада школьников «Будущее медицины» 2016 год Задания 2 этапа 11 класс

1X. Смесь хлороводорода и хлора пропустили через горячий раствор едкого кали, произошло полное взаимодействие реагентов. После выпаривания раствора масса остатка составила 113,9г, а массовая доля кислорода в остатке составила 8,43%. Вопросы:

Запишите уравнения реакций;
 Определите мольный состав газовой смеси;
 Определите массовый состав остатка.
 балла
 балла

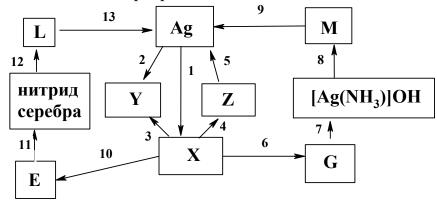
(8 баллов)

Решение	
Запишем уравнения реакций:	2 балла
1) $KOH + HCl = KCl + H_2O$	
2) $6KOH + 3Cl_2 = 5KCl + KClO_3 + 3H_2O$	
Молярная масса КС1 равна 74,5 г/моль	4 балла
Молярная масса KClO ₃ равна 122,5 г/моль	
Обозначим количество моль HCl:	
$\sqrt{(HCl)}$ = х моль.	
Обозначим количество моль Cl ₂ :	
$\sqrt{(Cl_2)}$ = у моль.	
Следовательно,	
$\sqrt{(KCl)}$ в реакции(1) равно х моль;	
$\sqrt{(KCl)}$ в реакции(2) равно у·5/3=1,667у моль;	
$\sqrt{(\text{KClO}_3)}$ в реакции(2) равно у/3=0,333у моль.	
Находим у через массовую долю кислорода в KClO ₃ :	
0.333 y $\cdot 3.16/113.9 = 0.0843$	
y = 0.6 моль (Cl ₂)	
Записываем уравнение:	
$m(KCl)_1 + m(KCl)_2 + m(KClO_3) = 113,9$	
$74,5x + 1,667y \cdot 74,5 + 0,333y \cdot 122,5 = 113,9$	
$74,5x + 1,667 \cdot 0,6 \cdot 74,5 + 0,333 \cdot 0,6 \cdot 122,5 = 113,9$	
74.5x + 74.5 + 24.5 = 113.9	
74.5x = 14.9	
x = 0,2 моль (HCl).	
Мольный состав газовой смеси:	
φ %(Cl ₂)=0,6/0,8=0,75 (75%)	
ϕ %(HCl) = 0,2/0,8=0,25 (25%)	
Определяем массовый состав остатка:	2 балла
$m(KCl)_1 + m(KCl)_2 + m(KClO_3) = 113,9$	
$74,5 \cdot 0,2 + 74,5 \cdot 1,667 \cdot 0,6 + 0,333 \cdot 0,6 \cdot 122,5 = 113,9$	
$m(KC1) = m(KC1)_1 + m(KC1)_2 = 74,5 \cdot 0,2 + 74,5 \cdot 1,667 \cdot 0,6 = 89,4 \Gamma$	

```
m(KClO_3) = 24.5 \text{ }\Gamma.
2 способ.
Запишем уравнения реакций:
    1) KOH + HCl = KCl + H_2O
   2) 6KOH + 3Cl_2 = 5KCl + KClO_3 + 3H_2O
Решение
По реакции (1):
\sqrt{(HCl)} = x моль.
\sqrt{(KC1)} = x моль.
По реакции (2):
\sqrt{(KClO_3)} = y моль.
\sqrt{(Cl_2)} = 3у моль.
\sqrt{(KCl)} = 5у моль.
Находит массу кислорода в KClO<sub>3</sub>:
m(O)=113.9\cdot0.0843=9.6 \Gamma
48v = 9.6
у=0,2 моль
\sqrt{(HC1)} = 0.2 моль.
\sqrt{(Cl_2)} = 0.6 моль.
Мольный состав газовой смеси:
\phi%(Cl<sub>2</sub>)=0.6/0.8=0.75 (75%)
\phi% ( HCl) = 0,2/0,8=0,25 (25%)
Находим массу KClO<sub>3</sub>.
74.5 \cdot x + 0.2 \cdot 5 \cdot 74.5 + 0.2 \cdot 122.5 = 113.9
x=0,2 моль
m( KCl)_{\text{остаток}}=0,2·5·74,5+0,2·74,5=89,4 _{\Gamma}
m(KClO_3) = 113,9-89,4=24,5\Gamma
m(KClO_3) = 24.5 Γ.
```

2X. Смешали безводный сульфат меди(II) и пентагидрат сульфата меди(II) в мольном соотношении 1:4. 10,0 г этой смеси растворили в 100,0 г 5% раствора сульфата меди(II) (процесс 1). В полученный раствор опустили пластинку кадмия массой 28 г. После полного окончании реакции (процесс 2) пластинку взвесили.

Вопросы:


Определите массовую долю CuSO₄ в полученном растворе (процесс 1);
 Запишите уравнение реакции (процесс 2);
 Укажите массу пластинки после взаимодействия.
 балла
 балла

(8 баллов)

Решение

Определим молярные массы исходных веществ:	4 балла
M(CuSO ₄)= 160 г/моль	
$M(CuSO_4 \cdot 5H_2O) = 250$ г/моль	
Зададим количество моль данных веществ:	
$\sqrt{\text{(CuSO}_4)} = \text{x моль}$	
$\sqrt{\text{CuSO}_4 \cdot 5\text{H}_2\text{O}} = 4\text{x}$ моль	
Выразим:	
$10.0 = 4x \cdot 250 + x \cdot 160$	
х=0,00862 моль	
Определим массы солей:	
$m (CuSO_4) = 0.00862 \cdot 160 = 1.38 \ \Gamma.$	
m (CuSO ₄ ·5H ₂ O)= $0.00862 \cdot 4 \cdot 250 = 8.62 \Gamma.$	
Рассчитаем массу CuSO ₄ в 10,0 г смеси:	
$CuSO_4 \rightarrow CuSO_4 \cdot 5H_2O$	
$z/160 = 8,62/250$ $z=5,52$ Γ CuSO ₄ B 8,62 Γ CuSO ₄ ·5H ₂ O.	
Всего в 10,0г: 1,38+5,52=6,9 г.	
Определим массу CuSO ₄ в полученном растворе:	
$m(CuSO_4) = 5.0 + 6.9 = 11.9 \Gamma$	
Определим массовую долю CuSO ₄ в полученном растворе:	
$W\%=11.9 \cdot 100\%/(100.0+10.0)=10.8\%$.	
Запишем уравнение реакции	2 балла
$CuSO_4 + Cd = CdSO_4 + Cu$	
Находим массу пластинки.	2 балла
По реакции определим массу израсходованного кадмия:	
$CuSO_4 + Cd = CdSO_4 + Cu$	
11,9/160 = m(Cd)/112	
m(Cd) = 8,33 г.	
По реакции определим массу образовавшейся меди:	
11,9/160 = m(Cu)/64	
m(Cu)=4,76 г.	
Находим массу пластинки:	
m=28-8,33+4,76= 24,43 г.	

3Х. Дана схема химических превращений:

- 1) Из металлического серебра получили соединение X.
- 2) Серебро, взаимодействуя с сероводородом в присутствии кислорода в течение продолжительного времени, образует соединение **Y**.
- 3) Соединение X также способно образовать соединение Y.
- 4) При взаимодействии с оксалатом натрия, соединение \mathbf{X} образует малорастворимое в воде соединение \mathbf{Z} .
- 5) При нагревании соединение **Z** разлагается с образованием серебра.
- 6) Соединение X при действии некоторого реагента легко образует малорастворимое в воде соединение G.
- 7) Соединение **G** может растворяться, при этом образуется соединение $[Ag(NH_3)_2]OH$.
- 8) При пропускании ацетилена через раствор [$Ag(NH_3)_2$]OH образуется соединение M.
- 9) При нагревании соединения М образуется серебро.
- 10) При пропускании аммиака через раствор соединения **X** образуется соединение **E**.
- 11) Соединение Е при хранении разлагается с образованием нитрида серебра.
- 12) **Нитрид серебра** растворяется в водном растворе цианида натрия с образованием комплексной соли **L**.
- 13) Комплексная соль L при действии цинка образует серебро.

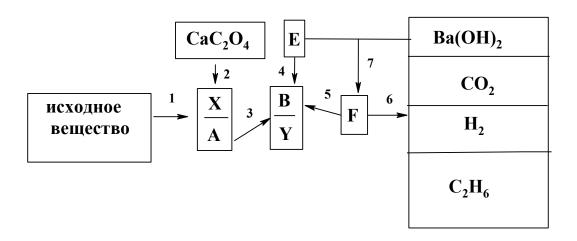
Вопросы:

1. Укажите все уравнения реакций;

13 баллов

2. Назовите соединения: **X, Y, Z, G, M, E, L**.

7 баллов


(20 баллов)

Решение	
Запишем уравнения реакций:	13 баллов
$3) \mathbf{Ag} + 2HNO_3 = \mathbf{AgNO_3} + NO_2 + H_2O$	
$4) 4Ag + 2H_2S + O_2 = 2Ag_2S + 2H_2O$	
$5) 2\mathbf{AgNO}_3 + \mathbf{Na}_2\mathbf{S} = \mathbf{Ag}_2\mathbf{S} + 2\mathbf{NaNO}_3$	
6) $2AgNO_3 + Na_2C_2O_4 = Ag_2C_2O_4 + 2NaNO_3$	
$7) \mathbf{Ag_2C_2O_4} = 2\mathbf{Ag} + 2\mathbf{CO_2}$	
$8) 2\mathbf{AgNO}_3 + 2NaOH = \mathbf{Ag}_2\mathbf{O} + 2NaNO_3 + H_2O$	
9) $Ag_2O + 4NH_3 + H_2O = 2[Ag(NH_3)_2]OH$	
10) $2[\mathbf{Ag(NH_3)_2}]\mathbf{OH} + \mathbf{C_2H_2} = \mathbf{Ag_2C_2} + 4\mathbf{NH_3} + 2\mathbf{H_2O}$	
$\mathbf{11)} \mathbf{Ag_2C_2} = 2\mathbf{Ag} + 2\mathbf{C}$	
$12) \mathbf{AgNO_3} + 2NH_3 = [\mathbf{Ag(NH_3)_2}]\mathbf{NO_3}$	
13) $3[Ag(NH_3)_2] NO_3 = Ag_3N + 3NH_4NO_3 + 2NH_3$	
14) $Ag_3N + 6NaCN + 3H_2O = 3Na[Ag(CN)_2] + NH_3 + 3NaOH$	
15) 2Na[Ag(CN)2] + Zn = Na2[Zn(CN)4] + 2Ag	
Назовем соединения:	7 баллов
X – нитрат серебра (I)	
\mathbf{Y} – сульфид серебра(I)	
\mathbf{Z} – оксалат серебра (I)	

G – оксид серебра (I)	
М – ацетиленид серебра (I)	
Е – нитрат диаминосеребра (I)	
L – дицианоаргентат (I) натрия	

4X. Навеску 3-гидрокси-3-карбокси-пентандиовой кислоты смешали с концентрированной серной кислотой, при этом образовалось соединение **A**, вода и газ **X** (реакция 1), который также образуется при нагревании концентрированной серной кислоты с оксалатом кальция (реакция 2). Оставшийся раствор после реакции (1) нагрели, в результате образовался газ **Y** и соединение **B** (реакция 3), которые могут выделиться при нагревании органической кислоты **E** с катализатором **F** (реакция 4) или из соли **F** (400°C) (реакция 5).

Продуктами электролиза раствора соли \mathbf{F} являются — этан, водород, углекислый газ и гидроксид бария (реакция 6), который реагирует с органической кислотой \mathbf{E} , образует соль \mathbf{F} (реакция 7).

Вопросы:

8. Назовите исходное соединение по тривиальной номенклатуре;

1 балл

9. Запишите уравнения указанных реакций;

7 баллов

10. Назовите соединения **A**, **B**, **X**, **Y**, **E**, **F**.

6 баллов

(14 баллов)

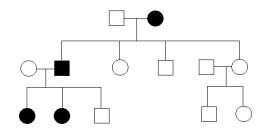
Решение	
Лимонная кислота	1 балл
Запишем уравнения реакций:	7 баллов
Реакция (1):	
$HOOC-CH_2-C(OH)(COOH)-CH_2-COOH (H_2SO_4 конц)=$	
$HOOC-CH_2-C(O)-CH_2-COOH(A) + H_2O + CO(X)$	
Реакция (2):	
$CaC_2O_4 + H_2SO_4$ (конц, t^o)= $CaSO_4 + CO_2 + H_2O + CO$ (X)	

Реакция (3):	
$HOOC-CH_2-C(O)-CH_2-COOH (H_2SO_4 конц,t^o)=$	
CH_3 - $C(O)$ - CH_3 (B) + CO_2 (Y) + H_2O	
Реакция (4):	
$2CH_3COOH(E)(Fe,Kt,t^0) = CH_3-C(O)-CH_3 + CO_2 + H_2O$	
Реакция (5):	
$(CH_3COO)_2Ba (F) (400^{\circ}C) = BaCO_3 + CH_3-C(O)-CH_3$	
Реакция (6):	
$(CH_3COO)_2Ba + 2H_2O$ (электролиз)= $C_2H_6 + 2CO_2 + H_2 + Ba(OH)_2$	
Реакция (7):	
$Ba(OH)_2 + 2CH_3COOH = (CH_3COO)_2Ba + 2H_2O$	
А – 3-оксопентандиовая кислота	6 баллов
В – пропанон	
\mathbf{X} – оксид углерода (II)	
Y – оксид углерода (IV)	
Е – этановая кислота	
\mathbf{F} – ацетат бария	

5Б. Объясните роль интерферона в механизме иммунного ответа клеток на вирусную инфекцию. Приведите заболевания, вызываемые РНК- и ДНК-содержащими вирусами.

(10 баллов)

Решение	
Интерферон связывается с мембранными рецепторами клеток	4 балла
побуждая их синтезировать внутриклеточные белки, способные	
разрушать вирусные мРНК, и тормозить клеточную систему	
синтеза белка. В результате действия интерферона на клетки они	
либо не производят вирусы, либо в них формируются дефектные	
вирусы, не опасные для других клеток.	
Болезни, вызываемые РНК-содержащими вирусами:	2 балла
а) грипп, простуда, свинка, корь, полиомиелит, желтая	
лихорадка, энцефалит, гепатит А, СПИД.	
б) онкогенные вирусные заболевания: саркомы, лейкозы,	2 балла
карциномы.	
Болезни, вызываемые ДНК-содержащими вирусами:	2 балла
гепатит В, герпес, оспа, опоясывающий лишай.	


6Б. Эпителиальные ткани: особенности расположения, строения, питания, происхождения.

(15 баллов)

ъ		
Решение:		
т сшение.		

Формирование тканей в процессе индивидуального развития животных организмов тесно связано с определенными структурами ранних стадий развития зародыша. На стадии гистогенеза происходит дальнейшая клеточная дифференцировка с образованием тканей. Эпителиальные ткани образуют внешние покровы тела организма и внутренних органов, выстилают внутренние полости тела (грудную, брюшную) и внутренних органов (кишечника, сосудов, воздухоносных путей, протоков желез), участвуют в образовании желез.	1 балл
Клетки эпителия плотно прилегают друг к другу, образуя сплошной пласт (межклеточного вещества практически нет), всегда располагаются на слое соединительной ткани, обладают высокой способностью к регенерации (восстановлению).	2 балла
Классификация эпителиальных тканей:	1 балл
II. Железистый эпителий1) экзокринные железы (одноклетоные и многоклеточные);2) эндокринные железы (одноклеточные и многоклеточные)	1 балл
В эпителиальных тканях никогда не бывает кровеносных сосудов и все необходимые клеткам вещества поступают от кровеносных сосудов нижележащих тканей путем диффузии.	1 балл
Разные виды эпителиальной ткани образуются из трех источников: а) из эктодермы — эпителий кожи, роговицы глаз, эпителий ротовой полости;	3 балла
б) из энтодермы — эпителий пищеварительного канала, эпителий пищеварительных желез — печени, поджелудочной железы, эпителий воздухоносных путей и легких;	3 балла
в) из мезодермы – эпителий полостей тела; эпителий сосудов, почек и мочеполовых каналов.	3 балла

- 7Б. В данной генетической задаче на родословную:
 1) определите и объясните тип наследования заболевания;
 2) введите данные по задаче;
 3) определите вероятность рождения больных дочерей во втором поколении, если мать здорова, а отец болен.

(10 баллов)

Решение	
1) Данная задача на признак, сцепленный с Х-хромосомой	3 балла
потому что у больной матери в первом поколении есть больной	
сын, дочери – здоровы.	
У больного отца во втором поколении больны только дочери, а	5 баллов
сын здоров, что подтверждает вышесказанное. В Х-хромосоме	
находится доминантный аллель болезни, т.к. больные есть в	
каждом поколении.	
2) Дано:	2 балла
X^{A} – болезнь	
X^{a} — норма	
здор. больн.	
3) P: $\bigcirc X^a X^a \times \bigcirc X^A Y$	
Γ аметы: \bigcirc - X^a	
♂ - X ^A , У	
δ / Ω X^a	
X^{A} $X^{A}X^{a}$	
больные	
y X ^a y	
Вероятность рождения больных дочерей – 100%.	

8Б. В инфекционное отделение больницы поступил студент из Анголы. Больной жалуется на тошноту, рвоту, головную боль, нарушение сна. При лабораторном исследовании в мазках крови больного обнаружены паразитические организмы веретеновидной формы, имеющие ядро в середине тела, жгутик, ундулирующую мембрану между телом и жгутиком, с помощью которых паразит передвигался в крови.

Как называется заболевание? Объясните, почему вы решили, что заболевание именно то, которое вы назвали? Кто является переносчиком и основными хозяевами при заболевании? Укажите механизм заражения человека; локализацию возбудителя заболевания в организме человека. Является ли данное заболевание природно-очаговым? (ответ аргументируйте).

Как вы считаете, возможно ли заражение данным заболеванием в странах Средней Азии и почему?

(15 баллов)

Решение	
1) студент из Анголы (Африка), жалуется на нарушение сна,	2 балла
головную боль. Данное заболевание называется африканская	
сонная болезнь (африканский трипаносомоз).	
2)веретеновидное строение тела с ундулирующей мембраной и	2 балла
жгутиком для передвижения дает право утверждать, что	
возбудителем этого заболевания является именно трипаносома;	
3) переносчиком африканской сонной болезни является муха цеце,	2 балла
обитающая в Африке, в организме которой трипаносомы проходят	
первую часть жизненного цикла, превращаясь в инвазионную	
стадию;	
4) основными хозяевами при африканской сонной болезни	2 балла
являются позвоночные животные и человек, в организме которых	
трипаносома проходит вторую часть жизненного цикла;	
5) через укус мухи цеце трипаносомы попадают в организм	2 балла
человека, локализуясь не только в крови, но и в спинномозговой	
жидкости, лимфе, тканях спинного и головного мозга;	
6) данное заболевание с природной очаговостью, т.к. жизненный	2 балла
цикл трипаносомы происходит среди диких животных, независимо	
от человека;	
7) в связи с потеплением климата на планете, вполне возможно	3 балла
расширение ареала обитания мухи цеце за пределами Африки.	