Задачный тур

Химия

(Автор задач 1-4 – В.В.Еремин, задачи 5 – А.А.Дроздов)

Простые задачи

1. Нанокристалл селенида вольфрама имеет массу 2.84·10⁻¹⁸ г и содержит 53.8% вольфрама по массе. Сколько всего атомов входит в состав нанокристалла? **(8 баллов)**

Решение:

1 способ:

Найдем брутто-формулу селенида вольфрама:

$$v(W): v(Se) = (53.8/184): (46.2/79) = 1:2.$$
 Формула – WSe₂.

Масса одной частицы WSe₂: $m(WSe_2) = (184+2.79) / 6.02.10^{23} = 5.68.10^{-22}$ г.

Число частиц WSe₂ в нанокристалле: $N(WSe_2) = 2.84 \cdot 10^{-18} / 5.68 \cdot 10^{-22} = 5000$.

Общее число атомов: 5000⋅3 = 15000.

2 способ.

Массы атомов вольфрама и селена: $m(W) = 184 / 6.02 \cdot 10^{23} = 3.06 \cdot 10^{-22}$ г, $m(Se) = 79 / 6.02 \cdot 10^{23} = 1.31 \cdot 10^{-22}$ г.

Число атомов вольфрама в наночастице: $N(W) = 2.84 \cdot 10^{-18} \cdot 0.538 / 3.06 \cdot 10^{-22} = 5000$.

Число атомов селена в наночастице: $N(Se) = 2.84 \cdot 10^{-18} \cdot 0.462 / 1.31 \cdot 10^{-22} = 10000$.

Общее число атомов: 5000 + 10000 = 15000.

Ответ. 15000 атомов (5 тыс. атомов W и 10 тыс. атомов Se).

2. Ниже приведены уравнения реакций получения различных наночастиц. Все коэффициенты расставлены, для наночастиц приведены простейшие (брутто) формулы Завершите эти уравнения, заполнив пропуски. В правой части каждого уравнения подчеркните формулу полученной наночастицы. (8 баллов)

... + NH₄Cl
$$\rightarrow$$
 BN + HCl + 3...
4... + 2NaH₂PO₂ + 4H₂O \rightarrow 4Cu + Na₂SO₄ + 3... + 2H₃PO₄
Ti(OC₃H₇)₄ + 2... \rightarrow ... + 4C₃H₇OH
2Al(NO₃)₃ + 6... + 3H₂O \rightarrow ... + 6NH₄NO₃

Решение:

 $H_3BO_3 + NH_4Cl \rightarrow BN + HCl + 3H_2O$

$$4CuSO_4 + 2NaH_2PO_2 + 4H_2O \rightarrow 4\underline{Cu} + Na_2SO_4 + 3H_2SO_4 + 2H_3PO_4$$
 $Ti(OC_3H_7)_4 + 2H_2O \rightarrow \underline{TiO_2} + 4C_3H_7OH$ (засчитывалась также реакция с H_2)
 $2Al(NO_3)_3 + 6NH_3 + 3H_2O \rightarrow \underline{Al_2O_3} + 6NH_4NO_3$

3. Двумерный наноматериал графан представляет собой полностью гидрированную графитовую плоскость. Определите брутто-формулу графана. Чему равен объём водорода (при 25 °C и 100 кПа), который необходим для полного гидрирования 100 мг графена? (8 баллов)

Решение:

Каждый атом углерода в графене может присоединить один атом водорода, поэтому бруттоформула графана – СН.

Запишем уравнение реакции гидрирования в виде:

$$C + 1/2 H_2 \rightarrow CH$$

$$v(C) = 0.1 / 12 = 8.33 \cdot 10^{-3}$$
 моль,

$$v(H_2) = 8.33 \cdot 10^{-3} / 2 = 4.17 \cdot 10^{-3} \text{ моль,}$$

$$V(H_2) = vRT / p = 4.17 \cdot 10^{-3} \cdot 8.314 \cdot 298 / 100 = 0.103 л = 103 мл.$$

 $\it Om вет.$ CH. 103 мл $\it H_2$.

4. При аэробном окислении циклогексана в присутствии нанокатализатора Au₄₀ образуется смесь соединений, в одном из которых массовая доля углерода на 12.2% меньше, чем в исходном углеводороде. Определите молекулярную и структурную формулу продукта реакции, если известно, что реакция окисления не затрагивает углеродный скелет **(8 баллов)**.

Решение:

Массовая доля углерода в циклогексане C_6H_{12} : $\omega(C) = 6\cdot12 / 84 = 0.857 = 85.7\%$. Массовая доля углерода в продукте реакции: $\omega(C) = 85.7 - 12.2 = 73.5\%$. Углеродный скелет не изменился, следовательно осталось 6 атомов углерода. Молярная масса вещества:

 $M(C_6H_xO_y) = 72 / 0.735 = 98$ г/моль, что соответствует молекулярной формуле $C_6H_{10}O$. Наиболее вероятный продукт – кетон, циклогексанон:

Принималось также эпокси-соединение

Интересное побочное решение:

Ответ. С₆H₁₀O.

5. При нагревании органической соли железа(II) образуется высокодисперсный порошок металла, при этом масса твёрдого вещества при разложении уменьшается в 2.61 раза. Установите формулу соли, напишите уравнение реакции. **(8 баллов)**

Решение:

Молярная масса соли: 56.2.61 = 146 г/моль, на кислотные остатки приходится 90 г/моль, это – формиат железа(II), $Fe(HCOO)_2$.

Реакция разложения: $Fe(HCOO)_2 \rightarrow Fe + H_2O\uparrow + CO\uparrow + CO_2\uparrow$,

принималось также

 $Fe(HCOO)_2 \rightarrow Fe + H_2 \uparrow + 2CO_2 \uparrow$.

Более сложные задачи

Задача 1. Окрашивание стекла наночастицами

(Автор – А.А. Дроздов)

Протравное окрашивание стекла основано на диффузии катионов между пастой, нанесенной на поверхность изделия, и стеклофазой. Одно из веществ, используемых для приготовления пасты, представляет собой белый порошок **X**, насыщенный раствор которого даёт белый осадок с раствором хлорида бария. Раствор **X** реагирует с водным раствором хромата калия с образованием красного осадка **Y**, изоструктурного **X**. Массовая доля кислорода в **X** на 1.24% больше, чем в **Y**.

Окрашивание стекла происходит при нагревании изделия с нанесенной на него пастой при 600 °C. Затем высохшую пасту отделяют. Поверхность изделия приобретает характерный цвет. Если вещество **X** ввести в расплавленную стекломассу, а затем ее охладить, окраски стекла не возникает.

Определите неизвестные вещества. Напишите уравнения реакций. (6 баллов)

Какой элемент **Z** вводится в стекло при помощи протравы? Чем обусловлена окраска стекла? Почему она не возникает сразу при добавлении **X** в расплавленную стекломассу? Какие примесные ионы, содержащиеся в стекле, необходимы для реализации протравного окрашивания? Напишите уравнение реакции. Что надо сделать с таким стеклом для возникновения окраски? Предложите два других соединения элемента **Z**, которыми можно заменить **X**. Назовите еще два элемента, которые окрашивают стекла таким же образом, что и **Z**. (14 баллов)

Решение:

Можно предположить, что X – сульфат. Тогда Y– это хромат некоторого металла. Определим этот металл. Формулы сульфата и хромата – $M(SO_4)_{n/2}$ и $M(CrO_4)_{n/2}$, где n – валентность металла. Составим уравнение:

$$\frac{16 \times 2 \times n}{M + 16 \times n + 32 \times n} - \frac{16 \times 2 \times n}{M + 26 \times n + 32 \times n} = 0,0124$$

решая квадратное уравнение, находим M = 108n.

При n = 1 M = 108, значит металл – серебро.

$$Ag_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2AgCl$$

$$Ag_2SO_4 + K_2CrO_4 = Ag_2CrO_4 \downarrow + K_2SO_4$$

Элемент Z - серебро Ag.

Окраска стекла обусловлена наночастицами серебра. При нанесении протравы происходит диффузия ионов серебра в приповерхностный слой стекла. Происходит ионный обмен между ионами серебра и ионами натрия в стекле. При наводке (длительном нагревании изделия при температуре 600 градусов Цельсия) ионы серебра восстанавливаются до металла примесями, находящимися в стекле. Здесь важную роль играют ионы железа(II):

$$Ag^{+} + Fe^{2+} = Ag + Fe^{3+}$$
.

При длительном выдерживании в нагретом состоянии (наводке) образующиеся атомы серебра агрегируются в наночастицы, дальнейший рост которых затруднен вследствие высокой вязкости среды и отрицательного заряда концевых атомов кислорода, окружающих полость, в которой находится наночастица. Цвет такого стекла будет желтым.

Вместо сульфата серебра можно использовать его оксид, хлорид, нитрат, фосфат.

Помимо серебряной, известны медная и золотая протравы.

Баллы:

За определение неизвестных веществ Х и Y – по 2 балла = 4 балла.

За определение элемента **Z** – (2 балла).

За указание о том, что окраска стекла обусловлена наночастицами серебра -(2 балла)

За объяснение отсутствия окраски при добавлении ${f X}$ в расплавленную стекломассу. (2 балла)

За формулу примесного иона, содержащегося в стекле, который необходим для реализации протравного окрашивания 2 балла.

За уравнение реакции восстановления серебра – (2 балла).

За ответ о том, что надо сделать со стеклом для возникновения окраски – (2 балла).

За формулы двух соединений, которыми можно заменить X – по 1 баллу, всего (2 балла).

За символы двух элементов, которые окрашивают стекла таким же образом, что и ${\bf Z}$ – по 1 баллу, всего 2 балла.

Итого 20 баллов.

Задача 2. Уникальный белок

(Автор - Б.Н. Гарифуллин)

Всестороннее изучение уникальных свойств белка **X** может способствовать разработке принципиально новых наноразмерных пептидных материалов, имеющих широкие перспективы внедрения в различных областях человеческой деятельности.

Известно, что обе субъединицы \mathbf{X} образованы многократно повторяющейся последовательностью из шести аминокислотных остатков. Соответствующий данной последовательности гексапептид \mathbf{Y} образован остатками трех канонических аминокислот \mathbf{A} , \mathbf{B} и \mathbf{C} в молярном соотношении 1:2:3, соответственно.

1. Установите аминокислоты **A-C**, если молярная масса гексапептида **Y** составляет 418.41 г/моль. Обязательно приведите логику своих рассуждений, позволяющую однозначно установить структуры **A-C** без применения метода слепого перебора вариантов. **(9 баллов)**

При рентгеноструктурном анализе было выяснено, что молекулы **X** образуют множество антипараллельных

β-слоев, расстояние между которыми может иметь одно из двух значений: 0.35 нм или 0.57 нм (при этом указанные значения обязательно чередуются между собой). β-слои,

являясь важнейшим примером растянутой периодической структуры в белках, формируют не единую плоскую, а гофрированную структуру. Боковые радикалы аминокислот в таких структурах поочередно (по ходу пептидной последовательности, от N- к C-концу) направлены то вверх, то вниз от основной плоскости листа.

- 2. Исходя из приведенной информации, определите структуру Ү. (6 баллов)
- 3. Укажите, какие типы межмолекулярных связей участвуют в стабилизации упаковки β-слоев в белке **X**. **(2 балла)**
- 4. Исходя из структуры **X**, определите, какими свойствами должен обладать данный белок. **(3 балла)**

Справочная информация по каноническим аминокислотам

аминокислота	обозначение	М, г/моль	аминокислота	обозначение	М, г/моль
Аланин	Ala	89,098	Лейцин	Leu	131,174
Аргинин	Arg	174,202	Лизин	Lys	146,189
Аспарагин	Asn	132,119	Метионин	Met	149,207
Аспарагиновая кислота	Asp	133,104	Пролин	Pro	115,132
Валин	Val	117,147	Серин	Ser	105,093
Гистидин	His	155,156	Треонин	Thr	119,120
Глицин	Gly	75,067	Тирозин	Tyr	181,191
Глутамин	Gln	146,146	Триптофан	Trp	204,228
Глутаминовая кислота	Glu	147,130	Фенилаланин	Phe	165,191
Изолейцин	Ile	131,174	Цистеин	Cys	121,154

Решение:

1. Определим суммарную молярную массу аминокислот, образующих **Y**: $M(\text{сум.}) = M(\textbf{Y}) + 5 \cdot M(\text{H}_2\text{O}) = 418.41 + 90.08 = 508.49 г/моль$

Средняя молярная масса аминокислот, входящих в состав **Y**, составляет 508.49/6=84.8 г/моль. Только одна протеиногенная аминокислота имеет молекулярную массу меньше полученного значения — глицин (*M*=75.07 г/моль). Следующая за ним по массе аминокислота аланин "весит" больше (*M*=89.09 г/моль). Третьей по минимальной массе среди канонических аминокислот выступает серин (105,1 г/моль). Тем самым, **Y**, несомненно, содержит глицин, причем в наибольшем количестве, учитывая, насколько близко значение 75.09 к 84.8 г/моль при наличии как минимум одного тяжелого партнера с М≥105,1 г/моль. Отсюда на остаток после удаления трех глицинов приходится: 508.5 - 3·75.09=283.3 г/моль. Средняя молярная масса аминокислот в безглициновом остатке — 94.4 г/моль. Это значит, что **Y** в обязательном порядке содержит аланин. Так как значение 89.1 гораздо ближе к 94.4, чем 105.1, то в искомый гексапептид входят два остатка аланина, а третья аминокислота имеет молярную массу 283.3 - 2·89.1=105.1, что соответствует серину. Аминокислотный состав олигопептида **Y**: Gly₃-Ala₂-Ser.

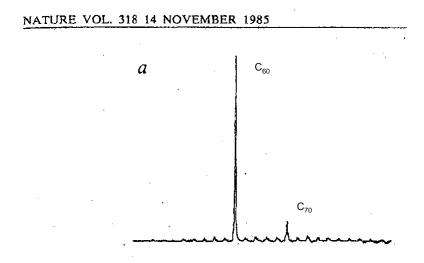
(структуры A-С по 3 балла; всего 9 баллов)

2. С учетом того, что межплоскостное расстояние в β -слоях, равное 0.35 нм, крайне мало, то оно не может включать ничего кроме атомов водорода бокового радикала глицина (как пример: длина связи C-H составляет около 1Å). Никакие иные группы, включая метильную, в таких условиях сосуществовать не смогут без серьезной дестабилизации структуры за счет значительного отталкивания в рамках ван-дер-ваальсовых взаимодействий. Тем самым, принимая во внимание периодичность расположения боковых радикалов относительно плоскости β -листа, остатки глицинов в структуре \mathbf{Y} не могут соседствовать с друг другом и разделены ровно одним остатком другой аминокислоты (аланина или серина). Другими словами, для олигопептида \mathbf{Y} в общем виде возможны варианты:

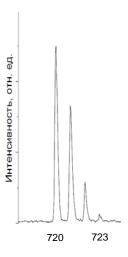
Для каждого варианта можно предположить по три возможности размещения остатков Ala и Ser. Тем самым, под условие подпадают <u>шесть</u> возможных гексапептидов, производных структур (1) и (2), где нижнее подчеркивание заменено на остатки Ala и Ser.

Боковые радикалы аланина и серина, будучи более объемными, чем атомы водорода, располагаются между плоскостями β -листов, разнесенными на дистанцию в 0.57 нм. Это означает, что β -складки в белке \mathbf{X} уложены по принципу "лицом к лицу, спина к спине": двойной слой Gly (3.5 Å) - двойной слой Ala/Ser (5.7 Å) - двойной слой Gly (3.5 Å) и т.д. (за каждый гексапептид — 1 балл, максимум — 6 баллов)

3. Межплоскостные взаимодействия включают уже упоминавшиеся выше ван-дерваальсовы взаимодействия, а также водородные связи (между гидроксильными группами серинов).


(по 1 баллу за каждое взаимодействие, всего – 2 балла)

4. Как аминокислотная (первичная), так и пространственная структура белка **X** высоко регулярна, сложена из больших сегментов вторичной структуры и поддерживается преимущественно взаимодействиями между различными полипептидными цепями. Это характерно для фибриллярных белков, имеющих вытянутую нитевидную структуру, в которой отношение длинной оси молекулы к короткой (степень асимметрии) превышает 80. Заметим, что высокую регулярность вторичной структуры фибриллярных белков задает регулярность их аминокислотной последовательности. В данной задаче рассматривался типичный фибриллярный белок – β-фиброин шелка. (З балла)


Задача 3. История фуллерена С60

(Автор – М.В.Коробов)

1. Как известно, фуллерен C_{60} был открыт с помощью масс-спектрометра, прибора, определяющего массу молекул. Вот, как выглядел масс-спектр C_{60} :

Позднее, на масс-спектрометре более высокого качества, был получен такой масс-спектр:

Почему в спектре появились дополнительные пики? Напишите формулы молекул, которым они соответствуют. (7 баллов)

2.

Как известно, фуллерен C_{60} имеет форму усеченного икосаэдра. Об этой пространственной фигуре рассуждали Архимед и Л. Да Винчи. Допустим, что эти ученые смогли синтезировать C_{60} . Можно было бы сегодня, через много сотен лет, отличить фуллерен Архимеда от фуллерена Л. Да Винчи по масс-спектру? Если да, то как? Считайте, что в нашем распоряжении есть идеальный масс-спектрометр, и пики любой величины будут обнаружены и измерены. (6 баллов)

3. Архимед и Л. Да Винчи оставили нам только рисунки, изображающие фуллерен С₆₀. Допустим, что вместе с рисунками сохранились два засушенных цветка, сорванные когда-то учеными. Можно было бы сегодня, через много сотен лет, с помощью масс-спектрометра отличить цветок Архимеда от цветка Л. Да Винчи ? Если да, то как? (7 баллов)

Решение:

1. У элемента углерод, С, есть два стабильных изотопа, 12 и 13, содержание которых составляет 98, 9 и 1,1%. Линии в спектре относятся к молекулам 12 С₆₀ (m=720), 12 С ₅₉ 13 С (m=721), 12 С₅₈ 13 С₂(m=722), 12 С₅₇ 13 С₃ (m=723).

На первой картинке из-за плохого разрешения прибора все эти пики слились в один пик, C_{60} , с массой m=720-723. Обратите внимание: первый бугорок (маленький пичок) справа от C_{60} на первом спектре соответствует массе 744. На втором спектре шкала вдоль оси «х» растянута (использован масс-спектрометр высокого качества), и пик « C_{60} » распался на несколько пиков.

Если в ответе указывалось, что появление пиков связано с изотопами углерода, то такой ответ оценивался в 2 балла. Если точно указывались формулы для всех пиков, то это добавляло еще 5 баллов.

(Максимальная оценка 7 баллов).

Если масса 722 связывалась с молекулой $C60H_2$, то такой ответ считался верным и давал 1 балл. В молекуле C60 много двойных связей, и присоединение двух атомов водорода в принципе возможно. А вот молекулы $C_{60}H$ и $C_{60}H_3$ образовываться не могут!

2. и 3. У углерода есть радиоактивный изотоп ¹⁴С. В живой природе содержание этого изотопа поддерживается на постоянном уровне за счет контакта с атмосферой. Как только образец переходит из живой природы в неживую, например, цветок срывается и засушивается, содержание ¹⁴С в образце начинает падать. Масс-спектрометр позволяет определить содержание остающегося в образце ¹⁴С. Чем больше прошло времени, тем оно меньше. В цветке, засушенном Архимедом, ¹⁴С меньше, чем в цветке Леонардо. Для фуллерена С₆₀, объекта неживой природы, подобный анализ провести нельзя. Неизвестно, сколько ¹⁴С было в фуллеренах в день синтеза.

Если в ответе говорилось, что определение возраста возможно с помощью изотопов углерода, это давало <u>2 балла.</u> Если назывался нужный изотоп (радиоактивный ¹⁴С), это добавляло еще <u>2 балла</u>. Правильное описание метода определения давало до <u>7 баллов</u>. Максимальная оценка за задания 2. и 3. – 13 баллов.

Максимальная оценка за всю задачу – 20 баллов.