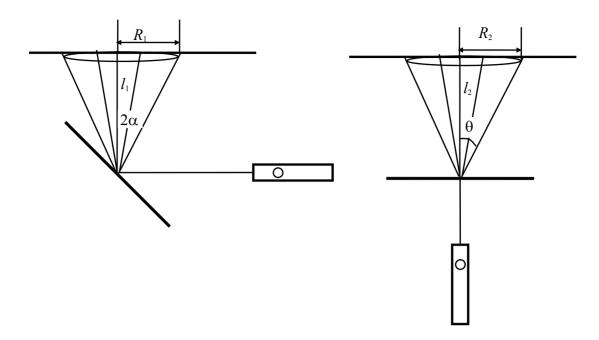

9 класс

9 класс. Задача 1: "Рассеяние света"

Задание:

1. Определите максимальный угол наклона α шероховатостей поверхности.



2. Определите показатель преломления n пленки.

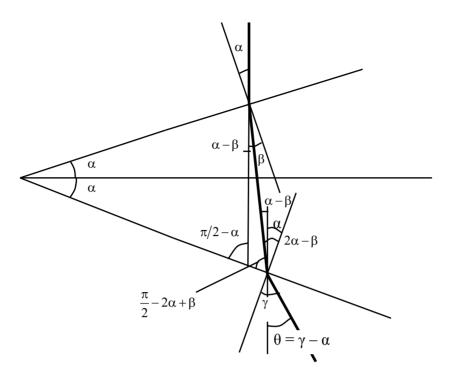
Оборудование: лазерная указка, канцелярский зажим, пленка, лист белой бумаги, линейка.

Решение

1. Делаем из листа бумаги вертикальный экран. Устанавливаем пленку в зажиме под углом 45 градусов к листу бумаги. Замеряем расстояние от середины пленки до экрана l_1 . Замеряем размер пятна света лазерной указки, направляя ее на экран перпендикулярно. Направляем луч от лазерной указки на середину пленки параллельно экрану и замеряем максимальные размеры отраженного пятна на экране. Убеждаемся, что размер рассеянного пятна гораздо больше размера пятна указки без рассеяния.

Изменение угла наклона поверхности на величину α приводит к отклонению отраженного луча на угол 2α .

$$2\alpha = R_1/l_1. \tag{2}$$


В тестовом эксперименте радиус пятна составил 1 см, расстояние от середины пленки до экрана 4.5 см. Соответственно, $2\alpha = 1/4.5$, $\alpha = 1/9 \approx 0.11$.

2. Пропускаем луч лазерной указки через пленку, стоящую параллельно экрану. Измеряем расстояние до экрана и размер пятна рассеянного пленкой света.

Тогда угол рассеяния

$$\theta = R_2/l_2. \tag{3}$$

Максимальное отклонение луча будет, когда обе шероховатости поверхности на противоположных сторонах пленки наклонены к нормали на угол α навстречу друг другу:

Согласно закону Снеллиуса на верхней границе

$$\frac{\sin\alpha}{\sin\beta} = n$$

учитывая малость углов $\,\theta << 1,\,\, \alpha << 1,\,\, \beta << 1_{\,,\,\, \text{получим}}$ $\,\beta = \alpha/n\,\,$

На нижней границе

$$\frac{\sin(2\alpha - \beta)}{\sin \gamma} \approx \frac{2\alpha - \beta}{\gamma} = \frac{1}{n},$$
$$\gamma = (2\alpha - \beta)n.$$

Тогда угол отклонения луча

$$\theta = \gamma - \alpha,$$

$$\theta = (2\alpha - \beta) n - \alpha = 2\alpha (n - 1).$$
(4)

Решим уравнение относительно n:

$$n = 1 + \theta / (2\alpha). \tag{5}$$

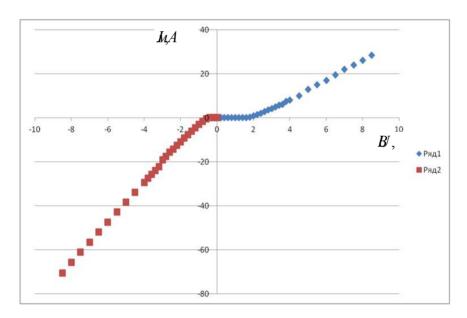
Подставляя измеренные значения $\theta \approx 1/7$ и $\alpha \approx 0.11$, получим n=1.64.

Критерии оценивания

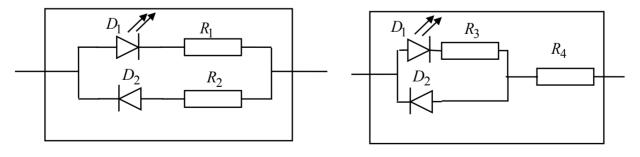
1.	Приведен рисунок опыта для определения угла наклона шероховатостей	1 балл
2.	Получена формула (2) для угла наклона шероховатостей	2 балла

3.	Определен угол наклона шероховатостей	2 балла
4.	Приведен рисунок для определения показателя преломления	1 балл
	и угла рассеяния	
5.	Определен угол рассеяния согласно (3)	2 балла
	(формула и значение по 1 баллу)	
6.	Получена формула (4) для угла рассеяния	2 балла
7.	Получена формула (5) для показателя преломления	2 балла
8.	Определен показатель преломления, ворота: $n = 1.65 \pm 0.15$	2 балла
9.	Оценена погрешность	1 балл

9 класс. Задача 2: "Черный ящик"


Определите, какая схема содержится в черном ящике, и параметры входящих в нее элементов.

Внимание! Перед началом измерений установите все регуляторы напряжения источника питания в крайнее левое (нулевое) положение. Больше 8 вольт на ящик не подавать! Новый черный ящик взамен сожженного, выдан, естественно, не будет.


Оборудование: черный ящик, мультиметр, регулируемый источник постоянного тока.

Решение

Вольт-амперная характеристика черного ящика:

Возможные схемы черного ящика:

Угловые коэффициенты ветвей характеристики имеют разный наклон, сопротивления могут быть найдены как

$$R_1 = \frac{\Delta U_+}{\Delta I_+} = 2200, \qquad R_2 = \frac{\Delta U_+}{\Delta I_-} \oplus O_M$$

ИЛИ

$$R_3 = \frac{\Delta U_+}{\Delta I_+} = \text{Olv0}, \qquad R_4 = \frac{\Delta U_+}{\Delta I_-} \text{Om}$$

Напряжения открытия диодов $B_1 = 1.5$ (светодиод), $B_2 = 0.5$ (выпрямительный диод).

Критерии оценивания

1.	Снята вольтамперная характеристика черного ящика в прямом направлении (таблица)	1 балл
2.	Снята вольтамперная характеристика черного ящика в обратном направлении (таблица)	1 балл
3.	Построена вольтамперная характеристика (0,5 балла),	2 балла
	правильно указаны физические величины на осях и	
	единицы их измерения (0,5 балла),	
	шкала (значения целые, четные или делящиеся на 5) (0,5	
	балла),	
	правильно выбран масштаб по осям (кривая занимает не	
	менее 75 % от поля графика) (0,5 балла)	
4.	Приведена возможная схема (любая эквивалентная)	3 балла
5.	Определены сопротивления по угловым коэффициентам	2 балла
	ВАХ при больших значениях напряжения при прямом	
	включении.	
6.	Определены сопротивления по угловым коэффициентам	2 балла
	ВАХ при больших значениях напряжения при обратном	
	включении.	
7.	Определены напряжения открытия диодов (по 1 баллу на	2 балла
	каждый).	
8.	Оценена погрешность	2 балла