Решения задач для 10 класса

- 1. См. задания для 5 класса, задача 5.
- 2. См. задания для 9 класса, задача 3.
- 3. См. задания для 9 класса, задача 4.
- 4. См. задания для 8 класса, задача 5.
- 5. Пусть все углы треугольника ABC меньше 120° и $AB \neq AC$. Рассмотрим точку T внутри треугольника, для которой $\angle BTC = \angle CTA = \angle ATB = 120^{\circ}$. Пусть прямая BT пересекает сторону AC в точке E, а прямая CT пересекает сторону AB в точке F. Докажите, что прямые EF и BC пересекаются в некоторой точке M, причём MB: MC = TB : TC.

Решение. 1) Допустим, что $EF \parallel BC$. Тогда по теореме Фалеса $\frac{AF}{FB} = \frac{AE}{EC}$. Пусть D- точка пересечения прямых AT и BC, тогда $\angle BTD = 180^{\circ} - 120^{\circ} = \angle CTD$, то есть TD- биссектриса в $\triangle TBC$. Аналогично TE- биссектриса в $\triangle TCA$, TF- биссектриса в $\triangle TAB$. Как известно, биссектриса делит сторону треугольника пропорционально двум другим сторонам, откуда $\frac{AF}{FB} = \frac{TA}{TB}$, $\frac{AE}{EC} = \frac{TA}{TC}$. Значит, TB = TC, и $\triangle TBC-$ равнобедренный (с основанием BC). Поэтому его биссектриса TD является также медианой и высотой. Значит, AD- медиана и высота $\triangle ABC$. т. е. AB = AC- противоречие.

2) По теореме Менелая для треугольника ABC и секущей $EM, \frac{MB}{MC} \cdot \frac{EC}{EA} \cdot \frac{FA}{FB} = 1.$

По теореме Чевы, $\frac{DB}{DC} \cdot \frac{EC}{EA} \cdot \frac{FA}{FB} = 1$. Значит, $\frac{MB}{MC} = \frac{DB}{DC}$.

По свойству биссектрисы, $\frac{DB}{DC}=\frac{TB}{TC},$ откуда $\frac{MB}{MC}=\frac{TB}{TC}.$