Задания 11 класса

Представлен один из возможных вариантов решения заданий

Задача №11-1

В общем виде уравнение первой реакции будет выглядеть так:

Me(SO₄)_x + 2xNaOH = Me(OH)_{2x} + Na₂SO₄
OH : Me = 0,366 : 0,634
$$\frac{34x}{0.366} = \frac{M}{0.634}$$

Если металл двухвалентный, то x = 1 и M = 58,9 г/моль, металл, подходящий под описание – никель (**X**). Учитывая, что в прошлом руда этого элемента применялась в стекловарении для окраски стёкол в зелёный цвет, а растворы никеля обладают зеленой окраской, можно предположить, что данный элемент – никель.

$$Ni + H_2SO_4 = NiSO_4 + SO_2 + H_2O$$
 (1)
 $NiSO_4 + 2NaOH = Ni(OH)_2 + Na_2SO_4$ (2)
 $2Ni(OH)_2 + C1_2 + 2NaOH = 2Ni(OH)_3 \downarrow + 2NaCl$ (3)
или $2Ni(OH)_2 + C1_2 + 2NaOH = 2NiO(OH) \downarrow + 2NaCl + 2H_2O$ (3')
 $Ni(OH)_2 + 6NH_3 \cdot H_2O = [Ni(NH_3)_6](OH)_2 + 6H_2O$ (4)

A – NiSO ₄	B – NiO(OH) или Ni(OH) ₃
$E - Ni(OH)_2$	$\Gamma - [Ni(NH_3)_6](OH)_2$

Общая формула кристаллогидрата NiSO₄·хH₂O.

$$M(NiSO_4 \cdot xH_2O) = 155+18x$$
Тогда $\omega = \frac{Ar(Ni)}{M(NiSO_4 \cdot xH_2O)} *100\% = 20,996\%$

$$\frac{59}{155+18x} = 0,20996$$

$$x = 7$$

Следовательно, формула кристаллогидрата – NiSO₄·7H₂O

Разбалловка

Определение элемента X (без подтверждения расчетом –0,5 б.)*	2 б.
Написание формул веществ А-Г	4 x 0,5 б. = 2 б.
Написание уравнений реакций 1–4	4 x 1 б. = 4 б.
Установление формулы кристаллогидрата	2 б.
ОЛОТИ	10 б.

^{*} определение молярной массы металла без указания на никель (или указание в качестве элемента X кобальта) оценивать в 2 балла. Остальную часть задачи, в случае принятия X — Со оценивать в 0 баллов

Задача №11-2

Общая формула гомологического ряда аренов C_nH_{2n-6} . Уравнение реакции нитрования в общем виде можно представить так:

$$C_nH_{2n-6} + HONO_{2 \text{ (конц)}} \rightarrow C_nH_{2n-7}NO_2 + H_2O$$

Найдем молярные массы исходного вещества и продуктов нитрования:

$$M (C_nH_{2n-6})=(14n-6)$$
г/моль $M (C_nH_{2n-7}NO_2)=(14n+39)$ г/моль

По условию реакции $M(C_nH_{2n-7}NO_2)=1,49M(C_nH_{2n-6})$

В результате нитрования возможно образование трех мононитропроизводных: орто, мета и пара-нитротолуолы:

$$CH_3$$
 $+HNO_3$
 $+HNO_3$
 CH_3
 $CH_$

Механизм реакции – электрофильное замещение:

$$CH_3$$
 CH_3 CH_3

Найдем массовые доли продуктов нитрования:

$$\omega(1) = 14,75/14,75+9,25+1 = 0,59$$
 или 59% $\omega(2) = 9,25/14,75+9,25+1 = 0,37$ или 37% $\omega(3) = 1-0,59-0,37 = 0,04$ или 4%

Найдем соответствие между структурой продукта и его содержанием в смеси.

Известно, что метильный радикал — заместитель 1-го рода. Он повышает электронную плотность в бензольном кольце, особенно на углеродных атомах в орто- и пара- положениях, что благоприятствуют взаимодействию с электрофильными реагентами именно этих атомов. В то же время из условия задачи известно, что при нитровании хлорбензола и ацетанилида изомер (3) не образуется вообще. Следовательно, это —м-изомер.

При переходе от заместителей - CH_3 и -Cl к более сложному и объемному - $NHCOCH_3$ следует ожидать уменьшения содержания в реакционной смеси о-изомера, так как более массивные заместители затрудняют подход новой частицы в о-положение. Следовательно, о-изомер – это изомер(1) и его массовая доля 59%.

Разбалловка

Определение вещества А, подтвержденное расчетом		2 б.
Написание уравнения реакции (1)		0,5 б.
Название изомеров мононитропроизводных		3х0,5 б. = 1,5 б.
Механизм реакции (1)		1 б.
Расчет массовых долей продуктов реакции		3х1 б. = 3 б.
Объяснение массового отношения изомеров в смеси		2 б.
	ИТОГО	10 б.

Задача №11-3

При растворении сплава в растворе азотной кислоты протекают реакции:

Al + 6HNO₃
$$\rightarrow$$
 Al(NO₃)₃ + 3NO₂ \uparrow + 3H₂O (1)
Zn + 4HNO₃ \rightarrow Zn(NO₃)₂ + 2NO₂ \uparrow + 2H₂O (2)

Рассчитаем массовые доли компонентов в сплаве:

$$v(NO_2) = 7.28 / 22.4 = 0.325$$
 моль.

Пусть в реакцию вступило *х* моль Al и у моль Zn, тогда

$$V(NO_2) = 3x + 2y = 0.325$$
 моль.

Выразим массу сплава:

$$m$$
(сплава) = m (Al) + m (Zn) = $27x + 65y = 4,57$ г.

Составим систему уравнений с двумя неизвестными:

$$\begin{cases} 3x + 2y = 0.325, \\ 27x + 65y = 4.57 \end{cases}$$

Решением системы уравнений являются x = 0.085, y = 0.035. Следовательно, сплав содержит 0,085 моль Al и 0,035 моль Zn.

Массы металлов в сплаве:

$$m(Al) = 27 \cdot 0,085 = 2,295 \ \Gamma$$

 $m(Zn) = 65 \cdot 0,035 = 2,275 \ \Gamma$

Массовые доли металлов в сплаве:

$$w(A1) = 2,295 / 4,57 = 0,5022 (50,22\%);$$

 $w(Zn) = 2,275 / 4,57 = 0,4978 (49,78\%).$

Определим вся ли кислота вступила в реакцию, либо остался ее избыток:

$$m(p\text{-pa HNO}_3)$$
= $V\cdot \rho$ = 43,75·1,44 = 63 г; $m(\text{HNO}_3) = m(p\text{-pa}) \cdot \omega(\text{HNO}_3)$ = 63 · 0.7 = 44,1 г; $n(\text{HNO}_3)$ = 44,1 / 63 = 0,7 моль

Из этого количества азотной кислоты израсходовано:

$$n(HNO_3) = 6 \cdot 0.085 + 4 \cdot 0.035 = 0.65$$
 моль

Следовательно, осталось: $n_1(HNO_3) = 0.7 - 0.65 = 0.05$ моль.

При добавлении к раствору гидрокарбоната натрия протекают реакции:

$$HNO_3 + NaHCO_3 \rightarrow NaNO_3 + H_2O + CO_2 \uparrow (3)$$

$$Al(NO_3)_3 + 3NaHCO_3 \rightarrow Al(OH)_3 \downarrow + 3CO_2 \uparrow + 3NaNO_3 (4)$$

$$Zn(NO_3)_2 + 2NaHCO_3 \rightarrow ZnCO_3 \downarrow + CO_2 \uparrow + 2NaNO_3 + H_2O (5)$$

В результате всех этих реакций выделяется CO_2 , его количество:

$$n(CO_2) = n_1(HNO_3) + 3n(A1) + n(Zn) = 0.05 + 3 \cdot 0.085 + 0.035 = 0.34$$
 моль.

Объем выделившегося диоксида углерода составляет

$$V(CO_2) = 0.34 \cdot 22.4 = 7.616 \text{ л}.$$

Масса осадка, образовавшегося в результате реакции с гидрокарбонатом:

$$m = m(Al(OH)_3) + m(ZnCO_3) = 0.085.78 + 0.035.125 = 11.005 \Gamma$$

Разбалловка

Написание уравнений реакций (1)–(2)	2х0,5 б. = 1 б.
Написание уравнений реакций (3)–(5)	3х1 б. = 3 б.
Расчет массовых долей цинка и алюминия в сплаве	2 б.
Расчет объема выделившегося углекислого газа	3 б.
Расчет массы образовавшегося осадка	1 б.
ОТИ	ОГО 10 б.

Задача №11-4

A –Cu	D – CuSO ₄	$G - [Cu(NH_3)_4](OH)_2$	J – CuS
$B - Cu_2O$	$E - Cu(OH)_2$	H – AgCl	
C – CuO	F – CuCl ₂	$I - [Ag(NH_3)_2](OH)$	

$$4Cu + O_{2(He,II)} = 2Cu_2O(1)$$

$$\begin{aligned} 2Cu + O_{2(H36)} &= 2CuO~(2) \\ CuO + H_2SO_4 &= CuSO_4 + H_2O~(3) \\ CuSO_4 + 2NaOH &= Cu(OH)_2 + Na_2SO_4~(4) \\ Cu(OH)_2 + 2HCl &= CuCl_2 + 2~H_2O~(5) \\ Cu(OH)_2 + 4NH_3 &= [Cu(NH_3)_4](OH)_2~(6) \\ CuCl_2 + 2AgNO_3 &= 2AgCl\downarrow + Cu(NO_3)_2~(7) \\ AgCl + 2NH_3 &= [Ag(NH_3)_2]Cl~(8) \\ Cu(NO_3)_2 + Na_2S &= CuS\downarrow + 2~NaNO_3~(9) \end{aligned}$$

Разбалловка

Определение вещества А	1 б.
Определение веществ В–Ј	9х0,5 б. = 4,5 б.
Написание уравнений реакций (1)–(9)	9х0,5 б. = 4,5 б.
ОПОГО	10 б.

Задача №11-5

Катализаторами процесса Вакера, описывающегося представленной в задаче реакцией является смесь хлоридов палладия (II) и меди (II). Альтернативными путями синтеза ацетальдегида являются реакция Кучерова (в присутствии солей ртути):

$$C_2H_2 + H_2O = CH_3COH$$
,

а также окисление или дегидрирование этилового спирта:

$$2C_2H_5OH + O_2 = 2CH_3COH + 2H_2O,$$

 $C_2H_5OH = CH_3COH + H_2.$

Представим уравнение Менделеева-Клапейрона в следующем виде

$$PV = nRT/V;$$

так как n/V = c, то P = cRT =

Для начальных условий:

$$P_0 = (0.1 + 0.3) RT = 0.4RT$$

После установления равновесия в смеси находится этаналь, этилен и кислород.

Пусть прореагировало x(моль/л) этилена, тогда кислорода прореагировало в два раза меньше, т.е. 0.5x (моль/л) и образовалось x (моль/л) этаналя.

Следовательно, в равновесной смеси содержится (0,1-x) (моль/л) этилена, (0,3-0,5x) (моль/л) кислорода, x (моль/л) этаналя. Тогда,

$$P_{\text{DBH}} = (0,1-x+0,3-0,5x+x)RT = (0,4-0,5x)RT$$

Составляем пропорцию:

Решая это уравнение, находим, что х=0,04.

$$K_c = \frac{[CH_3COH]^2}{[C_2H_4]^2[O_2]} = \frac{0.04^2}{0.06^2 \cdot 0.28} = 1.59$$

Чтобы увеличить выход ацетальдегида необходимо создать условия для смещения химического равновесия вправо, а именно:

- а) увеличить давление, так как она идет с уменьшением объема
- б) уменьшить температуру, так как вероятнее всего указанная реакция является экзотермической (реакция окисления)
- в) увеличить концентрацию исходного вещества кислорода
- г) уменьшить концентрацию продукта реакции ацетальдегида.

Разбалловка

Указание катализатора, который может использоваться		1 б.
Уравнения двух реакций – способов получения ацетальдегида		2х2 б. = 4 б.
Расчет константы равновесия		3 б.
Ответ на вопрос об увеличении выхода ацетилена		4х0,5 б. = 2 б.
И	ТОГО	10 б.