Задача №11-1

Очевидно, что **Б** является оксидом. Общую формулу **Б** можно записать как $Э_2O_x$. Тогда массовая доля кислорода в Б будет равна: $\omega(O) = A_r(O) \cdot n/M_r(Э_2O_x) = 16x / (2y + 16x) = 0,2133,$

где у – атомная масса элемента Э

16x = 0,4266y + 3,4128x

y = 29,5 x

При x = 1 получим y = 29,5 – не подходит

При x = 2 получим y = 59 – кобальт, то есть оксид $\mathbf{F} = \mathbf{CoO}$

То, что это именно оксид кобальта подтверждается цветом соли и оксида, а также реакциями 3-4 – получением сульфида и гидроксида кобальта.

Газ бурого цвета – это NO_2 , он может выделяться при разложении нитратов, значит, вещество **A** – кристаллогидрат нитрата кобальта $Co(NO_3)_2 \cdot nH_2O$.

Схема разложения вещества А:

$$Co(NO_3)_2 \cdot nH_2O \rightarrow Co(NO_3)_2 \rightarrow CoO$$
, откуда

 $n(Co(NO_3)_2 \cdot nH_2O) = n(Co(NO_3)_2) = n(CoO)$

По условию задачи, n(CoO) = m/M = 0.75/75 = 0.01 моль

 $n(Co(NO_3)_2) = m/M = 1.83/183 = 0.01$ моль,

что подтверждает наши предположения

Тогда можем найти молярную массу кристаллогидрата:

 $M (Co(NO_3)_2 \cdot nH_2O) = m/n = 3,45/0,01 = 345 \Gamma/моль$

На воду приходится 345-183 = 162 единицы массы, что соответствует 9 молекулам (162/18=9). Тогда, формула кристаллогидрата \mathbf{A} - $\mathrm{Co}(\mathrm{NO}_3)_2\cdot 9\mathrm{H}_2\mathrm{O}$

 $Co(NO_3)_2 \cdot 9H_2O = Co(NO_3)_2 + 9H_2O$ [при 150°C] (1)

 $2\text{Co}(\text{NO}_3)_2 = 2\text{CoO} + 4 \text{ NO}_2 + \text{O}_2 [\text{при } 350^{\circ}\text{C}] (2)$

 $Co(NO_3)_2 + 2NaOH = Co(OH)_2 + 2NaNO_3$ (3)

 $Co(NO_3)_2 + Na_2S = CoS \downarrow + 2NaNO_3$ (4)

В 200 г раствора с массовой долей Со(NO₃)₂ равной 9,45% содержится:

 $m(Co(NO_3)_2) = 200 \cdot 0.0945 = 18.9 \text{ }\Gamma$

Найденная масса нитрата кобальта содержится в:

 $m(Co(NO_3)_2 \cdot 9H_2O) = 345 \times 18,9/183 = 35,6 \Gamma$

Тогда масса необходимой воды $m(H_2O) = 200 - 35,6 = 164,4$ г

Разбалловка

Определение вещества А, Б*	2х2 б. = 4 б.
Написание уравнений реакций (1) – (4)	4x1 6. = 4 6.
Расчет масс воды и вещества А для приготовления раствора	2 б.
ОТОТИ	10 б.

* за определение веществ без проведения расчетов баллы снижают на половину (по 1 б. за A и B). Если участник высказывает предположение о формуле соединения, а затем подтверждает его расчетом, то баллы не снижаются.

Задача №11-2

Бутилацетат аллилфеноксиацетат метилантранилат

Так как вещество **D** реагирует с хлоридом железа (III), то оно содержит фенольную группу и еще одну в положении 2. Если мы предположим, что фенольная группа неизменна до соединения **A**, то $C_8H_8O_3 - C_6H_6O = C_2H_2O_2$. Из данной формулы можно получить функциональные группы только заимствованием водорода из бензольного кольца, т.е все группы находятся в разных положениях бензольного кольца, т.е. $C_8H_8O_3 - C_6H_4O = C_2H_4O_2$. Данную формулу можно разбить на альдегидную и метокси-группы.

Вещество **D** должно вступать в реакцию диазотирования, таким образом предположим, что вещество D - 2-аминофенол.

OH
$$+ NaNO_2 + HCl$$
 OH $+ N_2 + NaCl + H_2O$
OH $+ CH_3O)_2SO_2$ OCH₃
OH $+ CHCl_3 + 3KOH$ OH $+ 3KCl + 2H_2O$
OH $+ 3KCl + 2H_2O$
OCH₃

А – 4-гидрокси-3-метоксибензальдегид (Ванилин)

 $\mathbf{B} - 2$ -метоксифенол

С – 2-гидроксифенол (пирокатехин)

 $\mathbf{D} - 2$ -аминофенол

Разбалловка

Написание структурных формул ароматизаторов	3х1б. = 3 б.
Определение веществ A – D и их названия	4х1 б. = 4 б.
Уравнения реакций (1) – (3)	3х1 б. = 3 б.
ОТОТИ	10 б.

Задача №11-3

Выведем формулу комплексного соединения сурьмы и элемента Х:

Вскрытие соляной кислотой и осаждение хлоридом сурьмы указывает, что в комплекс входит хлор:

$$\frac{100-41,45-25,35}{35,5}:\frac{41,45}{A}:\frac{25,35}{122}$$

где А – атомная масса неизвестного элемента Х

Тогда мольное отношение C1: Sb =0.94:0.207 = 9:2

Рассмотрим возможные соотношения Cl:Sb:X

При 9:2:1 x = 400,5 (невозможно)

При 9:2:2 x = 200,3 (Hg)

При 9:2:3 x = 133,5 (Cs)

При 9:2:4 x= 100,1 (Ru?)

При 9:2:5 х=80,1 нет

При 9:2:6 х=66,7 нет

При 9:2:7 х= 57,2 нет При 9:2:8 x = 50,0 (V?)

При 9:2:9 x = 44,5 (Sc?)

При 9:2:10 x = 40,0 (Ca?)

Однако заряд комплексного иона можно просчитать: $[Sb_2Cl_9]^{3+}$. Следовательно, слишком большие значения х невозможны из соображений электронейтральности (например, 10 ионов кальция не компенсируются анионом)

Единственное разумное сочетание атомной массы и заряда - Cs

Таким образом, комплексное соединение имеет формулу – $Cs_3[Sb_2Cl_9]$.

Название цезий происходит от латинского слова «голубой», что связано с наличием синих линий в атомном спектре элемента.

Для получения металлического цезия необходим электролиз расплава соли в инертной атмосфере. Полученное простое вещество очень трудно хранится, при контакте с воздухом мгновенно со взрывом реагирует с кислородом, способно реагировать даже со льдом:

$$2Cs + 2H_2O = 2CsOH + H_2(1)$$

Формула квасцов — $CsAl(SO_4)_2 \cdot 12H_2O$. или $CsAl(SO_4)_2 \cdot nH_2O$. Массовая доля цезия в квасцах равна — 23,4%.

Цезий широко используется для производства фотоэлементов. Они эффективны из-за крайне низкой работы выхода электрона у цезия, что связано с ярко выраженными металлическими свойствами цезия.

Разбалловка

- *************************************					
За установление элемента X и комплексного соединения:	3 б.				
без проведения расчета	1 б.				
За ответы на вопросы 3 – 7	5х1 б. = 5 б.				
За ответ на вопрос 8 баллов	2 б.				
ОЛОТИ	10 б.				

Задача №11-4

Взаимодействие бромида натрия и концентрированной серной кислоты приводит к двум продуктам – бромоводороду и брому:

NaBr +
$$H_2SO_4$$
 = NaHSO₄ + HBr \uparrow или
2NaBr + H_2SO_4 = Na₂SO₄ + 2HBr \uparrow (1)
2HBr + H_2SO_4 = Br₂ + SO₂ + 2H₂O (2)

Стирол способен взаимодействовать как с бромом, так и с бромоводородом:

$$C_6H_5CH=CH_2+Br_2=C_6H_5CHBr-CH_2Br$$
 (3)
 $C_6H_5CH=CH_2+Br_2=C_6H_5CHBr-CH_3$ (4)

То есть реакционная смесь содержит 2 вещества:

1,2-дибром-1-фенилэтан, обозначим его массу в смеси за Х

1-бром-1-фенилэтан, обозначим его массу в смеси за Ү

Тогда масса реакционной смеси будет равна:

$$X+Y=18,73$$

Согласно уравнениям реакций (3), (4) количество молей стирола равно сумме количеств веществ продуктов реакций:

$$M(C_6H_5CHBr-CH_2Br) = 264$$
 г/моль $M(C_6H_5CHBr-CH_3) = 185$ г/моль $M(C_6H_5CH=CH_2) = 104$ г/ моль $X/264 + Y/185=10,21/104$

Решая систему уравнений:

$$\begin{cases} X+Y=18,73 \\ X/264+Y/185=10,21/104 \end{cases}$$

Получим, что $X = 1.9 \, \Gamma$ – масса $C_6H_5CHBr-CH_2Br$

$$Y = 16,83$$
 Γ – Macca $C_6H_5CHBr-CH_3$

Тогда массовые доли компонентов реакционной смеси будут равны:

$$w(C_6H_5CHBr-CH_2Br) = 1,9/18,73 = 0,101 (10,1\%)$$

 $w(C_6H_5CHBr-CH_3) = 100 - 10,1 = 89,9\%$

Написание уравнений (1) – (4)	4х1 б. = 4 б.
Составление системы уравнений	2 б.
Расчет масс компонентов и их массовых долей	4 б.
ОЛОТИ	10 б.

Задача №11-5

На аноде протекает реакция его растворения с образованием ионов серебра, которые вступают в реакцию с хлоридами, осаждая их:

A:
$$Ag - e = Ag^{+}(1)$$

 $Ag^{+} + Cl^{-} = AgCl(2)$

Конец реакции можно определить используя хромат калия. Хромат серебра будет образовываться только лишь после того, как все хлориды прореагируют.

По реакции (2) видно, что $n(Cl^-)=n(Ag^+)$, а количество полученного серебра определяется по закону электролиза Фарадея.

$$n(Ag^+) = \frac{I*t}{z*F} = \frac{0.5*19.93*60}{1*96485} = 6,197$$
 ммоль
$$m(Cl^-) = n(Cl^-) \cdot M(Cl^-) = n(Ag^+) \cdot M(Cl^-) = 6.197*10^{-3}*35.5 = 220$$
мг

Написание уравнений реакций (1), (2)	2x2 6 = 4 6.
Расчет количества образовавшихся ионов Ag ⁺	4 б.
Расчет массы хлоридов в воде	2 б.
ОТОТИ	10 б.

4.2.3. Задания 11 класса

Задача №11-1

Определим вещество Д. Очевидно, что осадок, образующийся с нитратом серебра, является галогенидом:

$$HX + AgNO_3 = AgX\downarrow + HNO_3$$
 (1) $n(AgX) = n(HX)$ $14,35/M(AgX) = 0,1$ $M(AgX) = 14,35 \cdot 0,1 = 143,5 = 108 + M(X)$ $M(X) = 143,5 - 108 = 35,5$ г/моль, что соответствует хлору

Соответственно, вещество Д – HCl.

Желтый осадок – ортофосфат серебра, следовательно Е – Н₃РО₄:

$$H_3PO_4 + 3AgNO_3 = Ag_3PO_4 \downarrow + 3HNO_3$$
 (2)

Фосфорная и хлороводородная кислота образуются при гидролизе хлорида или оксохлорида фосфора (V). Так как Б – бинарное вещество, то это PCl_5 .

Газ A – это SO_2 , о чем свидетельствует образование неустойчивой сернистой кислоты при взаимодействии с водой, восстановительные свойства соединений серы (+4) и помутнение раствора $Ca(OH)_2$.

Так как гидролиз B приводит к образованию ортофосфорной кислоты, то B – оксид фосфора (V).

При растворении Γ в воде образуется хлороводородная и сернистая кислота, следовательно Γ содержит хлор и серу в степени окисления +4, то есть Γ – SOCl₂ (тионилхлорид).

A	SO_2	Д	HCl
Б	PCl ₅	E	H_3PO_4
В	P_2O_5	Ж	H_2SO_3
Γ	SOCl ₂		

$$SO_2 + PCl_5 = SOCl_2 + P_2O_5 (3)$$

$$PCl_5 + 4H_2O = H_3PO_4 + 5HCl (4)$$

$$SO_2 + H_2O \leftrightarrow H_2SO_3 (5)$$

$$5H_2SO_3 + 2KMnO_4 = K_2SO_4 + MnSO_4 + 3H_2O + 2H_2SO_4 (6)$$

$$SOCl_2 + 2H_2O = H_2SO_3 + 2HCl (7)$$

$$P_2O_5 + 3H_2O = 2H_3PO_4$$
 (8)
 $Ca(OH)_2 + SO_2 = CaSO_3 + H_2O$ (9)

Разбалловка

Определение веществ А – Ж	7x0,56. = 3,5 6.
Подтверждение вещества Д расчетом	2 б.
Написание уравнений реакций (1) – (9)	9х0,5б. = 4,5 б.
ОТОТИ	10 б.

Задача №11-2

Уравнения реакций:

Вещества:

A -
$$H_3C$$
 COOH

B - $(CH_3COO)_2Ca$

C - H_3C CH₃

D - H_3C CH₃
 CH_3
 CH

Разбалловка

Написание уравнений реакций	10x0,56. = 5 6.
Определение форму A – I и изоамилацетата	10x0,56. = 5 6.
ОТОТИ	10 б.

Задача №11-3
$$AgCl = Ag^{+} + Cl^{-}$$

$$\Pi P = [Ag^{+}][Cl^{-}] = [Ag^{+}]^{2},$$

$$[Ag^{+}] = \sqrt{\Pi P} = \sqrt{1,78 \cdot 10^{-10}} = 1,33 \cdot 10^{-5} \text{ моль/л}$$

$$Ag_{2}CrO_{4} = 2Ag^{+} + CrO_{4}^{2}$$

$$\Pi P = [Ag^{+}]^{2}[CrO_{4}^{2-}] = [Ag^{+}]^{2} \cdot (0,5[Ag^{+}]) = 0,5[Ag^{+}]^{3}$$

$$[Ag^{+}] = \sqrt[3]{2\Pi P} = \sqrt[3]{2 \cdot 1,1 \cdot 10^{-13}} = 6,03 \cdot 10^{-5} \text{ моль/л}$$

Так как концентрация ионов серебра в насыщенном растворе хромата серебра выше, чем в насыщенном растворе хлорида серебра, поэтому AgCl осаждается в первую очередь.

$$Ag^{+} + Cl^{-} = AgCl\downarrow$$
 $2Ag^{+} + CrO_{4}^{2-} = Ag_{2}CrO_{4}\downarrow$ $n(AgNO_{3}) = n(Cl^{-}) = 0,1065/35,5 = 0,003$ моль $V(AgNO_{3}) = 0,003/0,1 = 0,03$ л (30 мл)

Определим состав раствора в точке эквивалентности. В насыщенном растворе хлорида серебра содержится:

$$[Ag^+] = [Cl^-] = 1,33 \cdot 10^{-5}$$
 моль/л

Рассчитаем концентрацию хромат-ионов в растворе. При расчете пренебрежем изменением объема вследствие осаждения хлорида серебра.

$$V(p-pa) = 100 + 1 + 30 = 131 \text{ мл}$$

$$[CrO_4^{2-}] = \frac{1 \cdot 10^{-3} \cdot 1}{0,131} = 7,63 \cdot 10^{-3} \text{ моль/л}$$

Рассчитаем концентрацию ионов-серебра необходимую для начала осаждения хромата серебра в данных условиях:

$$\Pi P = [Ag^{+}]^{2} [CrO_{4}^{2-}]$$

$$[Ag^{+}] = \sqrt{\frac{\Pi P}{[CrO_{4}^{2-}]}} = \sqrt{\frac{1,1 \cdot 10^{-13}}{7,63 \cdot 10^{-3}}} = 3.79 \cdot 10^{-6} _{\text{МОЛЬ/Л}}$$

Следовательно, концентрация ионов серебра в точке эквивалентности достаточна, для начала осаждения хромата серебра.

Исходя из величины ПР хромата серебра и равновесной концентрации ионов серебра в точке эквивалентности определим концентрацию хромат-ионов достаточную для осаждения Ag_2CrO_4 :

$$\begin{split} \Pi P &= [Ag^+]^2 [Cr{O_4}^{2\text{-}}] \\ [Cr{O_4}^{2\text{-}}] &= \Pi P \ / \ [Ag^+]^2 = 1.1 \cdot 10^{-13} / (1.33 \cdot 10^{-5})^2 = 6.22 \cdot 10^{-4} \ \text{моль/л} \\ n(Cr{O_4}^{2\text{-}}) &= 6.22 \cdot 10^{-4} \cdot (0.130 + x) \ \text{моль,} \end{split}$$

где 0,130 – объем раствора в точке эквивалентности, л;

х – объем добавленного раствора хромата калия, л.

$$V(K_2CrO_4) = \frac{n(CrO_4^{2^-})}{C(K_2CrO_4)}$$

$$x = \frac{6,22 \cdot 10^{-4}(0,13+x)}{1} = 8,09 \cdot 10^{-5} + 6,22 \cdot 10^{-4} x$$

$$x = 8,1 \cdot 10^{-5} \text{ л (0,081 мл)}$$

Разбалловка

Написание выражений для ПР хлорида и хромата серебра	2х0,5б. = 1 б.
Pacчет [Ag ⁺] для AgCl и Ag ₂ CrO ₄	2x16. = 2 6.
Объяснение того, что первым осаждается AgCl	1 б.
Расчет объема раствора AgNO ₃	2 б.
Подтверждение расчетом, что в точке эквивалентности начнется	2 б.
осаждение Ag ₂ CrO ₄	
Расчет объема раствора K ₂ CrO ₄	2 б.
ОПОТИ	10 б.

Задача №11-4

- 1. Как видно из рисунка элементарная ячейка содержит 6 атомов меди, каждый из которых принадлежащих элементарной ячейке на 1/2 и 8 атомов золота, принадлежащих ячейке на 1/8. Следовательно состав ячейки и формула ИМС Cu₃Au.
- 2. Приняв, что плотность металла равна отношению массы атомов металла в элементарной ячейке (m) к объему элементарной ячейки (V_{28}) получим:

$$\rho = \frac{m}{V_{\mathcal{I}}}$$

Так как мы имеем дело с кубической элементарной ячейкой, то $V_{\mathfrak{IH}}=a^3$

Массу атомов в одной элементарной ячейке найдем как произведение количества формульных единиц (Z) на массу одной формульной единицы, определив ее как отношение молярной массы металла (M) к числу Авогадро (то есть отношение массы 1 моля металла к числу атомов металла в 1 моле):

$$m = Z \frac{M}{N_A}$$

$$\rho = \frac{ZM}{N_A a^3} \left[\frac{\varepsilon / \text{моль}}{1 / \text{моль} \cdot \text{см}^3} = \frac{\varepsilon}{\text{см}^3} \right]$$

Отсюда параметр элементарной ячейки равен:

$$a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{1 \cdot 387.5}{6.02 \cdot 10^{23} \cdot 12.2}} = 3.75 \cdot 10^{-8} = 3.75 \text{ Å}$$

Кратчайшее межатомное расстояние равно расстоянию межу атомами меди и золота, то есть половине гипотенузы равнобедренного прямоугольного треугольника образованного тремя

атомами золота, лежащими в на одной из граней куба. Вычислим кратчайшее межатомное расстояние (r) используя теорему Пифагора:

$$(2r)^{2} = a^{2} + a^{2} = 2a^{2}$$

$$r = \frac{\sqrt{2a^{2}}}{2} = \frac{\sqrt{2 \cdot (3,75)^{2}}}{2} = 2,65 \text{ Å}$$

$$3\text{Cu} + 2\text{HNO}_{3} + 6\text{HCl} = 3\text{CuCl}_{2} + 2\text{NO} + 4\text{H}_{2}\text{O} \text{ (1)}$$

$$A\text{u} + \text{HNO}_{3} + 4\text{HCl} = \text{H[AuCl}_{4]} + \text{NO} + \text{H}_{2}\text{O} \text{ (2)}$$

$$2\text{H[AuCl}_{4]} + 3\text{H}_{2}\text{O}_{2} = 2\text{Au} + 3\text{O}_{2} + 8\text{HCl} \text{ (3)}$$

Для выделения меди можно воспользоваться следующей последовательностью действий:

$$CuCl_2 + 2NaOH = Cu(OH)_2 \downarrow + 2NaCl$$
 (4)
 $Cu(OH)_2 = CuO + H_2O$ (5) [при нагревании]
 $CuO + H_2 = Cu + H_2O$ (6)

Разбалловка

Определение формулы ИМС	2 б.
Расчет параметра элементарной ячейки	3 б.
Расчет кратчайшего межатомного расстояния	1 б.
Написание уравнений (1) – (3)	3х1б. = 3 б.
Способ выделения меди из раствора	1 б.
ОТОТИ	10 б.

Задача №11-5

Допустим, что соединение \mathbf{A} имеет формулу $C_x H_v O_z N_w$

$$C_xH_yO_zN_w \rightarrow xCO_2 + y/2H_2O$$

 $n(H_2O)=0,18/18=0,01$ моль, тогда в веществе ${\bf A}$ $n(H)=2n(H_2O)=0,02$ моль

 $n(CO_2) = 0.22/44 = 0.005$ моль, в веществе A: n(C) = 0.005 моль

$$NH_3 + HCl \rightarrow NH_4Cl$$

$$n(NH_3) = n(HC1) = 0,2$$
моль/л·0,05л = 0,01 моль

$$C_xH_yO_zN_w \rightarrow wNH_3$$

 $n(N) = 0.01$ моль

Вычислим количество моль кислорода в веществе А:

$$m(O) = 0.30 - 0.005 \cdot 12 - 0.02 \cdot 1 - 0.01 \cdot 14 = 0.08 \ \Gamma$$

$$n(O) = 0.08/16 = 0.005$$
 моль

$$x : y : z : w = 0.005 : 0.02 : 0.005 : 0.01 = 1 : 4 : 1 : 2$$

Формула вещества $A - CH_4ON_2$. Так как вещество A обнаружено в моче, то разумно предположить, что это мочевина $(NH_2)_2CO$.

Вещества, отвечающие схеме получения Б:

Определение вещества А (без расчетов – 1 балл)	4 б.
Определение веществ Б – Ж	6x16. = 66.
ОТОТИ	10 б.

3.3.3. Задание 11 класса

Задача 1

Предложенный набор веществ включает органические соединения различных классов: карбоновые кислоты, их производные, многоатомный спирт, моносахарид, амин. Некоторые соединения содержат несколько различных функциональных групп (глицин, глюкоза, винная кислота). Поэтому начать анализ следует с определения групп веществ, содержащих какуюлибо функциональную группу, например, карбоксильную группу. Рассмотрим следующий вариант:

1. Определим вещества, содержащие карбоксильную группу.

а) Проведем качественную реакцию на карбоксильную группу с гидрокарбонатом натрия. Карбоновые кислоты, будучи более сильными кислотами чем угольная, вытесняют углекислый газ из гидрокарбоната натрия.

$$R-COOH + NaHCO_3 \rightarrow R-COONa + CO_2 + H_2O(1)$$

В трёх пробирках наблюдается выделение углекислого газа. Это глицин, уксусная и винная кислоты.

б) Затем растворы проверяем универсальной индикаторной бумагой.

В двух пробирках наблюдаем покраснение. Это растворы винной и янтарной кислот. В одной пробирке посинение - это раствор ацетата натрия. В остальных среда нейтральная.

На основании проделанных опытов можем определить глицин (нейтральная среда и выделение CO_2 при взаимодействии с $NaHCO_3$) и ацетат натрия (щелочная среда раствора). Для того чтобы идентифицировать винную кислоту используем реакцию с гидроксидом меди. При добавлении к свежеприготовленному осадку $Cu(OH)_2$ раствора виннокислого натрия осадок растворяется и образуется тёмно-синий раствор дитартратокупрата натрия:

Уксусная кислота в данных условиях образует голубой раствор ацетата меди (II):

$$2CH_3COOH + Cu(OH)_2 = (CH_3COO)_2Cu + 2H_2O(3)$$

3. Для идентификации веществ, водные растворы которых имеют нейтральную реакцию среды, исследуем их отношение к свежеприготовленному гидроксиду меди (II):

При добавлении к $Cu(OH)_2$ раствора глюкозы или ксилита осадок растворяется и образуется тёмно-синий раствор комплексного соединения. С мочевиной такая реакция не идет.

$$Cu(OH)_2 + 2C_5H_{12}O_5 \rightarrow (C_5H_{11}O_5)_2Cu + 2H_2O (4)$$
OH
OH
OH
OH
OH
OH
OH

$$Cu(OH)_2 + 2C_6H_{12}O_6 \rightarrow (C_6H_{11}O_6)_2Cu + 2H_2O$$
 (5)
OH OH OH OH

При нагревании пробирки с глюкозой синяя окраска исчезает и выпадает оранжевый осадок Cu_2O :

$$RCHO + 2Cu(OH)_2 \rightarrow RCOOH + Cu_2O \downarrow + 2H_2O$$
 (6)

Таким образом? определяем ксилит и глюкозу, а методом исключения мочевину.

Кроме того, подтвердить наличие мочевины можно с помощью щелочного гидролиза: В пробирку наливаем 1 мл раствора определяемого вещества, прилить ~ 1 мл гидроксида натрия и нагреваем. Выделение аммиака определяем по запаху или с помощью влажной индикаторной бумаги (посинение):

 $(NH_2)_2CO + 2NaOH \rightarrow Na_2CO_3 + 2NH_3\uparrow (7)$

	NaHCO ₃	Индикатор	Cu(OH) ₂	Cu(OH)2, t	NaOH, t
Глицин	$CO_2\uparrow(1)$	желтый	Голубой раствор	ı	ı
Уксусная	$CO_2\uparrow(1)$	rancom nă	Голубой		
кислота	$CO_2 (1)$	красный	раствор (3)	1	_
Винная	$CO_2\uparrow(1)$	красный	Синий	-	-
кислота	$CO_2 \mid (1)$	красный	раствор (2)		
Ксилит		желтый	Синий		
КСИЛИТ	_	желтыи	раствор (4)	1	_
Гимоморо		желтый	Синий	Оранжевый	
1 JIOKU3a	Глюкоза -	желтыи	раствор (5)	осадок (6)	-
Ацетат		синий			
натрия	- В	Синии	_	-	-
Мочевина	-	желтый	-	-	$NH_3\uparrow(7)$

Задача 2

Основные свойства столового уксуса определяет уксусная кислота. В промышленности её получают окислением ацетальдегида или каталитическим карбонилированием метанола:

$$CH_3COH + [O] = CH_3COOH$$

 $CH_3OH + CO = CH_3COOH$

Уксусную кислоту, предназначенную для использования в пищевой промышленности, получают путем микробиологического окисления этанола:

$$C_2H_5OH + O_2 = CH_3COOH + H_2O$$

В задаче представлена методика позволяющая определить уксусную кислоту по реакции:

$$NaOH + CH_3COOH = CH_3COONa + H_2O$$
 (8)

Рассчитаем массовую долю уксусной кислоты в столовом уксусе, исходя из результатов титрования. По уравнению реакции (8):

$$n(CH_3COOH) = n(NaOH) = C(NaOH) \cdot V(NaOH) \cdot 10^{-3}$$
 (моль),

где V(NaOH) – объем раствора NaOH, ушедшего на титрование (мл).

$$m(CH_3COOH) = n(CH_3COOH) \cdot M(CH_3COOH)$$

$$\begin{split} m_{p\text{-}pa} &= V_{p\text{-}pa} \cdot \rho \\ w(\text{CH}_3\text{COOH}) &= m(\text{CH}_3\text{COOH}) \cdot 100 / m_{p\text{-}pa} \end{split}$$

Написание уравнений (1) – (8)	8x0,56. = 4 6.
Указание вещества, определяющего свойства уксуса	1 б.
Способы получения уксусной кислоты (2 и более)	1 б.
Приведение расчетов, позволяющих определить массу уксусной	2 б.
кислоты (без учета точности результатов)	
Определение соответствия номера пробирки и вещества (задача 1) –	7x16. = 76.
по 1 баллу за каждое вещество	
Количественная характеристика точности (задача 2):	
относительная ошибка менее 5 %	5 б.
каждые дополнительные 5% ошибки – снижение на 2 балла	
ОТОТИ	20 б.