ЗАДАЧА 1.

Otbet:
$$\Delta t = \frac{4abh}{\pi d^2 \sqrt{2g(c-h)}} \approx 7.6 \cdot 10^4 c$$
.

Скорость воды в момент её затекания в баржу $\upsilon = \sqrt{2g(c-h)} \approx 5 M/c$.

Баржа затонет тогда, когда её борта сравняются с поверхностью воды, то есть уровень воды над дном баржи достигнет величины h. В этот момент внутри баржи будет объём воды

$$V=abh=S\,\upsilon\cdot\Delta t$$
 , где $S=rac{\pi\cdot d^2}{4}$ - площадь отверстия, Δt - искомое время, за которое

объём воды в барже станет равен V. Отсюда находим $\Delta t = \frac{4abh}{\pi d^2 \sqrt{2g(c-h)}} \approx 7.6 \cdot 10^4 c$.

ЗАДАЧА 2.

OTBET:
$$v = 13.4 \text{ m/c}$$

Результирующая сила, действующая на катер со стороны воды $F = \rho \cdot S \cdot u(u - \upsilon)$. Она равна силе сопротивления, так как катер по условию движется с постоянной скоростью: $\rho \cdot S \cdot u(u - \upsilon) = k\upsilon^2$. Решая это квадратное уравнение, находим $\upsilon = 13.4~\text{M/c}$.

ЗАДАЧА 3.

Otbet:
$$P = 8P_0 + \frac{24\sigma}{r}$$
.

ЗАДАЧА 4.

Otbet:
$$T = \sqrt{T_1 \cdot T_2} = 400 \, K$$
;

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - \frac{T_2 \cdot T_1}{T} - T + T_2 \right) = 100 \quad \kappa Bm \ .$$

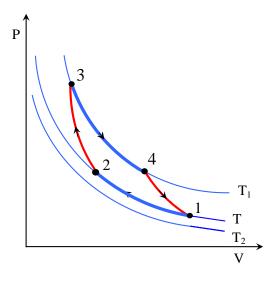
За время \mathcal{T} холодильник получает количество теплоты, равное $Q_{\alpha}=\alpha(T-T_2)\mathcal{T}$.

Коэффициент полезного действия цикла Карно

$$\frac{Q_H - Q_x}{Q_H} = \frac{T_1 - T}{T_1} .$$

Полезная работа тепловой машины равна

$$A = Q_{H} - Q_{x} = Q_{H} \left(1 - \frac{T}{T_{1}} \right) = Q_{x} \frac{T_{1}}{T} \left(1 - \frac{T}{T_{1}} \right) = \alpha (T - T_{2}) \tau \cdot \left(\frac{T_{1}}{T} - 1 \right).$$



Мошность тепловой машины

$$N = \frac{A}{2\tau} = \frac{\alpha}{2} \left(T_1 - \frac{T_2 \cdot T_1}{T} - T + T_2 \right).$$

Эта величина достигает максимума при $T = \sqrt{T_1 \cdot T_2} = 400 \, K$.

Выполнив вычисления, в этом случае

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = \frac{1}{2} \left(800 - 2\sqrt{800 \cdot 200} + 200 \right) = 100 \ \kappa Bm \,.$$

ЗАДАЧА 5

OTBET:
$$A = \frac{L \cdot I^2}{6}$$
.

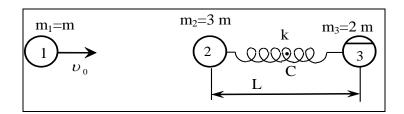
Искомая работа , равная разности энергий магнитного поля катушки после и до внесения в неё стержня, может быть найдена по формуле $A = \frac{\Phi^2}{2} \cdot \left(\frac{1}{L_{\rm l}} - \frac{1}{L}\right)$, где равна $L_{\rm l} = L \left(1 - \frac{1}{2^2}\right)$.

Тогда работа, которую нужно совершить, чтобы внести в катушку сверхпроводящий стержень, $L \cdot I^2 \qquad L \cdot I^2$

будет равна
$$A = \frac{L \cdot I^2}{2(2^2 - 1)} = \frac{L \cdot I^2}{6}$$
.

ЗАДАЧА 6.

Other: $\mu = \frac{a_3^{\text{max}}}{g} = \frac{3v_o}{2 \cdot g} \sqrt{\frac{k}{30m}}.$



Удар центральный абсолютно упругий. Используя законы сохранения энергии и импульса для абсолютно упругого удара, найдём скорость шарика 2 после удара

$$\upsilon_2 = \frac{2m_1}{m_1 + m_2} \upsilon_o = \frac{2m}{m + 3m} \upsilon_o = \frac{\upsilon_o}{2}.$$

Амплитудное значение ускорения шарика 3

$$a_3^{\text{max}} = \frac{3\nu_o}{2} \sqrt{\frac{k}{30m}}.$$

Условие начала проскальзывания верхней части шарика относительно нижней:

 $a_3^{\max} = \mu \cdot g$, откуда минимальное значение коэффициента трения между частями

разрезанного шарика, $\mu = \frac{a_3^{\text{max}}}{g} = \frac{3\nu_o}{2g} \sqrt{\frac{k}{30m}}$

ЗАДАЧА 1.

Otbet:
$$\Delta t = \frac{4abh}{\pi d^2 \sqrt{2g(c-h)}} \approx 1,1 \cdot 10^4 c$$
.

Скорость воды в момент её затекания в баржу $\upsilon = \sqrt{2g(c-h)} \approx 4,47\, m/c$

Баржа затонет тогда, когда её борта сравняются с поверхностью воды, то есть уровень воды над дном баржи достигнет величины h. В этот момент внутри баржи будет объём воды

$$V=abh=S\,\upsilon\cdot\Delta t$$
 , где $S=rac{\pi\cdot d^{\,2}}{4}$ - площадь отверстия, Δt - искомое время, за которое

объём воды в барже станет равен V. Отсюда находим $\Delta t = \frac{4abh}{\pi d^2 \sqrt{2g(c-h)}} \approx 1,1 \cdot 10^4 c$.

ЗАДАЧА 2.

Other:
$$v = 14.6 \ m/c$$
.

Результирующая сила, действующая на катер со стороны воды $F = \rho \cdot S \cdot u(u - v)$. Она равна силе сопротивления, так как катер по условию движется с постоянной скоростью: $\rho \cdot S \cdot u(u-v) = kv^2$. Решая это квадратное уравнение, находим $v = 14.6 \ \text{м/c}$.

3 АДАЧА 3.
Ответ:
$$P = 27P_0 + \frac{96\sigma}{r}$$
.

ЗАДАЧА 4.

Otbet:
$$T = \sqrt{T_1 \cdot T_2} = 400 \, K$$
;

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 T_2} + T_2 \right) = 45 \ \kappa Bm$$

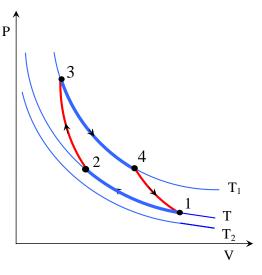
au холодильник получает время количество теплоты, равное $Q_{\alpha}=lpha(T-T_2) au$.

Коэффициент полезного действия цикла Карно

$$\frac{Q_H - Q_x}{Q_H} = \frac{T_1 - T}{T_1} \,.$$

Полезная работа тепловой машины равна

$$A = Q_H - Q_x = Q_H \left(1 - \frac{T}{T_1} \right) = Q_x \frac{T_1}{T} \left(1 - \frac{T}{T_1} \right) = \alpha (T - T_2) \tau \left(\frac{T_1}{T} - 1 \right).$$



Мощность тепловой машины

$$N = \frac{A}{2\tau} = \frac{\alpha}{2} \left(T_1 - \frac{T_2 \cdot T_1}{T} - T + T_2 \right).$$

Эта величина достигает максимума при $T = \sqrt{T_1 \cdot T_2} = 400 \, K$

Выполнив вычисления, в этом случае получим

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = \frac{1}{2} \left(640 - 2\sqrt{800 \cdot 200} + 250 \right) = 45 \ \kappa Bm \,,$$

$$\mathbf{3}$$
 АДАЧА $\mathbf{5}$.

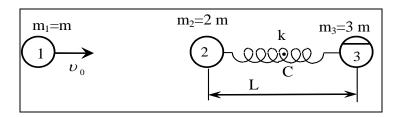
Other: $A = \frac{L \cdot I^2}{16}$.

Искомая работа, равная разности энергий магнитного поля катушки после и до внесения в неё стержня, может быть найдена по формуле $A = \frac{\Phi^2}{2} \cdot \left(\frac{1}{L_1} - \frac{1}{L}\right)$, где равна $L_1 = L\left(1 - \frac{1}{3^2}\right)$.

Тогда работа, которую нужно совершить, чтобы внести в катушку сверхпроводящий стержень, будет равна $A = \frac{L \cdot I^2}{2(3^2 - 1)} = \frac{L \cdot I^2}{16}$.

ЗАДАЧА 6.

Other: $\left| \mu = \frac{4}{3} \frac{\upsilon_o}{g} \sqrt{\frac{k}{30m}} \right| .$



Удар центральный абсолютно упругий. Используя законы сохранения энергии и импульса для абсолютно упругого удара, найдем скорость шарика 2 после удара:

$$v_2 = \frac{2m_1}{m_1 + m_2} v_o = \frac{2m}{m + 2m} v_o = \frac{2v_o}{3}$$

Амплитудное значение ускорения шарика 3

$$a_3^{\text{max}} = \frac{4\nu_o}{15} \sqrt{\frac{5k}{6m}}$$

Условие начала проскальзывания верхней части шарика относительно нижней:

 $a_3^{\max} = \mu \cdot g$, откуда минимальное значение коэффициента трения между частями

разрезанного шарика, $\mu = \frac{a_3^{\text{max}}}{g} = \frac{4}{3} \frac{\upsilon_o}{g} \sqrt{\frac{k}{30m}}$

3 АДАЧА 1.
Ответ:
$$\Delta t = \frac{D^2 \cdot h}{d^2 \sqrt{2g(c-h)}} \approx 89,5 \ c$$
.

Скорость воды в момент её затекания в бочку $\upsilon = \sqrt{2g(c-h)} \approx 5 M/c$

Бочка затонет тогда, когда её борта сравняются с поверхностью воды, то есть уровень воды над дном бочки достигнет величины h. В этот момент внутри бочки будет объём воды

$$V=rac{\pi D^2}{4}\,h=S\,\upsilon\cdot\Delta t$$
 , где $S=rac{\pi\cdot d^2}{4}$ - площадь отверстия, Δt - искомое время, за которое

объём воды в находим

$$\Delta t = \frac{\pi D^2 \cdot h \cdot 4}{4 \cdot \pi d^2 \sqrt{2g(c-h)}} = \left(\frac{D}{d}\right)^2 \cdot \frac{h}{v} = \frac{400}{4,47} \approx 89,5 \ c$$

ЗАДАЧА 2.

Ответ:
$$v = 11 \ m/c$$
 .

Результирующая сила, действующая на катер со стороны воды $F = \rho \cdot S \cdot u(u - v)$. Она равна силе сопротивления, так как катер по условию движется с постоянной скоростью: $\rho \cdot S \cdot u(u-v) = kv^2$. Решая это квадратное уравнение, находим v = 11 м/с.

ЗАДАЧА 3.

Otbet:
$$P = \frac{P_0}{8} - \frac{3\sigma}{2r}$$
.

3 АДАЧА 4.
Ответ:
$$T = \sqrt{T_1 \cdot T_2} = 600 \, K$$
;

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = 300 \ \kappa Bm$$
.

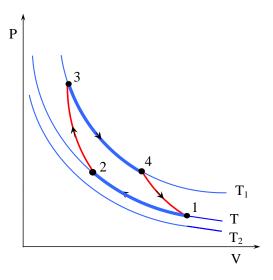
За время au холодильник получает количество теплоты, равное $Q_{\alpha} = \alpha (T - T_2) \tau$.

Коэффициент полезного действия цикла Карно

$$\frac{Q_H - Q_x}{Q_H} = \frac{T_1 - T}{T_1} \ .$$

Полезная работа тепловой машины равна

$$A = Q_H - Q_x = Q_H \left(1 - \frac{T}{T_1} \right) = Q_x \frac{T_1}{T} \left(1 - \frac{T}{T_1} \right) = \alpha (T - T_2) \tau \left(\frac{T_1}{T} - 1 \right).$$



Мошность тепловой машины

$$N = \frac{A}{2\tau} = \frac{\alpha}{2} \left(T_1 - \frac{T_2 \cdot T_1}{T} - T + T_2 \right).$$

Эта величина достигает максимума при $T = \sqrt{T_1 \cdot T_2} = \sqrt{1200 \cdot 300} = 600 \, K$.

Выполнив вычисления, в этом случае получим

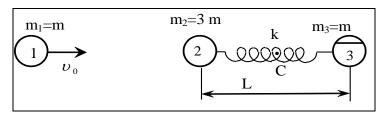
$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = \frac{2}{2} \left(1200 - 2 \cdot 600 + 300 \right) = 300 \quad \kappa Bm ,$$

OTBET:
$$A = \frac{L \cdot I^2}{30}$$
.

Искомая работа, равная разности энергий магнитного поля катушки после и до внесения в неё стержня, может быть найдена по формуле $A = \frac{\Phi^2}{2} \cdot \left(\frac{1}{L_1} - \frac{1}{L}\right)$, где равна $L_1 = L\left(1 - \frac{1}{4^2}\right)$. Тогда работа, которую нужно совершить, чтобы внести в катушку сверхпроводящий стержень, будет равна $A = \frac{L \cdot I^2}{2(4^2 - 1)} = \frac{L \cdot I^2}{30}$.

ЗАДАЧА 6.

Otbet:
$$\mu = \frac{a_3^{\text{max}}}{g} = \frac{\upsilon_o}{4g} \sqrt{\frac{3k}{m}} \,.$$



Удар центральный абсолютно упругий.

Используя законы сохранения энергии и импульса для абсолютно упругого удара, найдём $\upsilon_2 = \frac{2m_1}{m_1 + m_2} \upsilon_o = \frac{2m}{m + 3m} \upsilon_o = \frac{\upsilon_o}{2}$ скорость шарика 2 после удара

Амплитудное значение ускорения шарика 3

$$a_3^{\text{max}} = \frac{3}{16} \upsilon_o \sqrt{\frac{3m}{k}} \cdot \left(\sqrt{\frac{4k}{3m}}\right)^2 = \frac{\upsilon_o}{4} \sqrt{\frac{3k}{m}}.$$

Условие начала проскальзывания верхней части шарика относительно нижней:

 $a_3^{\max} = \mu \cdot g$, откуда минимальное значение коэффициента трения между

частями разрезанного шарика, $\mu = \frac{a_3^{\text{max}}}{g} = \frac{\upsilon_o}{4g} \sqrt{\frac{3k}{m}} \, .$

3 АДАЧА 1.
Ответ:
$$\Delta t = \frac{D^2 \cdot h}{d^2 \sqrt{2g(c-h)}} \approx 984 \ c$$
.

Скорость воды в момент её затекания в бочку $\upsilon = \sqrt{2g(c-h)} \approx 5 M/c$.

Бочка затонет тогда, когда её борта сравняются с поверхностью воды, то есть уровень воды над дном бочки достигнет величины h. В этот момент внутри бочки будет объём воды

$$V = \frac{\pi D^2}{4}h = S\upsilon \cdot \Delta t$$
, где $S = \frac{\pi \cdot d^2}{4}$ - площадь отверстия, Δt - искомое время, за которое

объём воды в бочке станет равен

Отсюда находим

$$\Delta t = \frac{\pi D^2 \cdot h \cdot 4}{4 \cdot \pi d^2 \sqrt{2g(c-h)}} = \left(\frac{D}{d}\right)^2 \cdot \frac{h}{\upsilon} \approx 984 \ c$$

ЗАДАЧА 2.
Ответ:
$$\upsilon = 7.3 \ m/c$$
.

Результирующая сила, действующая на катер со стороны воды $F = \rho \cdot S \cdot u(u - \upsilon)$. Она равна силе сопротивления, так как катер по условию движется с постоянной скоростью: $\rho \cdot S \cdot u(u-v) = kv^2$. Решая это квадратное уравнение, находим v = 7.3 м/с

OTBET:
$$P = \frac{P_0}{27} - \frac{32\sigma}{27 \cdot r}$$
.

ЗАДАЧА 4.

Otbet:
$$T = \sqrt{T_1 \cdot T_2} = 300 \, K$$
;

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = 50 \ \kappa Bm$$

За время τ холодильник получает количество теплоты, равное $Q_{\alpha} = \alpha (T - T_2) \tau$.

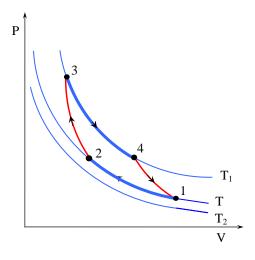
Коэффициент полезного действия цикла Карно

$$\frac{Q_H - Q_x}{Q_H} = \frac{T_1 - T}{T_1} .$$

Полезная работа тепловой машины равна

$$A = Q_H - Q_x = Q_H \left(1 - \frac{T}{T_1} \right) = Q_x \frac{T_1}{T} \left(1 - \frac{T}{T_1} \right) = \alpha (T - T_2) \tau \left(\frac{T_1}{T} - 1 \right).$$

Мощность тепловой машины



$$N = \frac{A}{2\tau} = \frac{\alpha}{2} \left(T_1 - \frac{T_2 \cdot T_1}{T} - T + T_2 \right).$$

Эта величина достигает максимума при $T = \sqrt{T_1 \cdot T_2} = \sqrt{450 \cdot 200} = 300 \, K$. Выполнив вычисления, в этом случае получим

$$N_{MAX} = \frac{\alpha}{2} \left(T_1 - 2\sqrt{T_1 \cdot T_2} + T_2 \right) = \frac{2}{2} \left(450 - 2 \cdot 300 + 200 \right) = 50 \quad \kappa Bm,$$

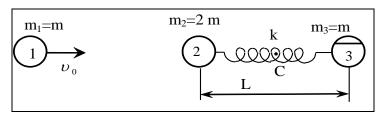
ЗАДА<u>ЧА 5</u>

OTBET:
$$A = \frac{L \cdot I^2}{48}$$
.

Искомая работа , равная разности энергий магнитного поля катушки после и до внесения в неё стержня, может быть найдена по формуле $A=\frac{\varPhi^2}{2}\cdot\left(\frac{1}{L_{\rm l}}-\frac{1}{L}\right)$, где равна $L_{\rm l}=L\left(1-\frac{1}{5^2}\right)$. Тогда работа, которую нужно совершить, чтобы внести в катушку сверхпроводящий стержень, будет равна $A=\frac{L\cdot I^2}{2(5^2-1)}=\frac{L\cdot I^2}{48}$

ЗАДАЧА 6.

OTBET: $\mu = \frac{a_3^{\text{max}}}{g} = \frac{2v_o}{3g} \sqrt{\frac{2k}{3m}}.$



Удар центральный абсолютно упругий.

Используя законы сохранения энергии и импульса для абсолютно упругого удара , получим скорость шарика 2 после удара $\upsilon_2 = \frac{2m_1}{m_1 + m_2} \upsilon_o = \frac{2m}{m + 2m} \upsilon_o = \frac{2\upsilon_o}{3}.$

Амплитудное значение ускорения шарика 3

$$a_3^{\text{max}} = \frac{2\nu_o}{3} \sqrt{\frac{2k}{3m}}$$

Условие начала проскальзывания верхней части шарика относительно нижней :

 $a_3^{\max} = \mu \cdot g$, откуда минимальное значение коэффициента трения между частями

разрезанного шарика,
$$\mu = \frac{a_3^{\text{max}}}{g} = \frac{2\upsilon_o}{3g} \sqrt{\frac{2k}{3m}}$$