«УТВЕРЖДАЮ»
Ректор МГТУ им. Н.Э. Баумана

		A.A. Александров
(>>	2015 г.

Типовой вариант академического соревнования

Олимпиады школьников «Шаг в будущее»

по общеобразовательному предмету «Математика»

- 1. Один автомобиль проходит в минуту на 240 м больше, чем другой, поэтому затрачивает на прохождение одного километра на 12,5 секунды меньше. На сколько метров первый автомобиль увеличивает расстояние от второго за время, пока второй проходит 1 км? (8 баллов)
 - 2. Решите уравнение $2^x 6 \cdot 2^{1-x} = 1$.

(8 баллов)

- 3. Какое наибольшее значение может принять сумма первых n членов арифметической прогрессии (a_n) , если $a_{17} = 52$, $a_{30} = 13$? (8 баллов)
 - 4. Найдите все целочисленные решения системы $\begin{cases} \sqrt{2} \cos \frac{\pi y}{8} = \sqrt{1 + 2 \cos^2 \frac{\pi y}{8} \cos \frac{\pi x}{4} \cos \frac{\pi x}{4}}, \\ |x| + |y 4| \le 4, \quad y < x + 2. \end{cases}$

(8 баллов)

- 5. Решите неравенство $\frac{\sqrt{x^2 + x} \sqrt{4 2x}}{2x + 5 2\sqrt{x^2 + 5x + 6}} \le 0.$ (10 баллов)
- 6. Найдите множество значений функции $f(x) = g(g^2(x))$, где $g(x) = 3/(x^2 4x + 5)$.
- 7. Площадь равнобокой трапеции равна 450. Окружность, построенная на боковой стороне трапеции как на диаметре, касается прямой, содержащей другую боковую сторону, и делит большее основание трапеции в отношении 24:25. Найдите стороны трапеции.

(12 баллов)

- 8. Составьте уравнение общей касательной к графикам функций $y = 1 + x x^2$ и $y = 0, 5(x^2 + 3)$ (12 баллов)
- 9. Определите все значения a, при которых уравнение $(x-a)^2 1 = 2(x+|x|)$ имеет ровно два различных корня. Укажите эти корни при каждом из найденных значений a. (12 баллов)
- 10. Через диагональ прямоугольного параллелепипеда и точку, лежащую на боковом ребре, не пересекающем эту диагональ, проведена плоскость так, чтобы площадь сечения параллелепипеда этой плоскостью была наименьшей. Найдите объем параллелепипеда, если известно, что диагонали сечения равны 3 и $\sqrt{3}$, а угол между ними 30°. (12 баллов)

Олимпиады школьников «Шаг в будущее» по образовательному предмету «Математика», осень 2015 г.

Вариант № 1

- 1. Один рабочий за два часа делает на 5 деталей больше, чем другой, соответственно на изготовление 100 деталей он затрачивает на 2 ч меньше. Какое время тратит каждый рабочий на изготовление 100 деталей? (8 баллов)
- 2. Сколько последовательных членов арифметической прогрессии 32, 28, 24, ..., начиная с первого, надо сложить, чтобы получить сумму, равную 132? (8 баллов)
 - 3. Решите уравнение $9^{1+\sqrt{x}} + 3^{1-2\sqrt{x}} = 28$. (8 баллов)
 - 4. Решите систему уравнений

$$\begin{cases} 2\cos^2 x + 2\sqrt{2}\cos x \cos^2 4x + \cos^2 4x = 0, \\ \sin x = \cos y. \end{cases}$$
 (8 баллов)

- 5. Решите неравенство $\sqrt{(x+2)|x+1|+|x|} \ge x+2$. (10 баллов)
- 6. Найдите множество значений функции

$$f(x) = 2\cos\left(\frac{\pi}{4}\sin(\sqrt{x-3} + 2x + 2)\right). \tag{10 баллов}$$

- 7. В треугольнике ABC углы A и B равны 45° и 30° соответственно, CM медиана. Окружности, вписанные в треугольники ACM и BCM касаются отрезка CM в точках D и E. Найдите площадь треугольника ABC, если длина отрезка DE равна $4(\sqrt{2}-1)$. (12 баллов)
- 8. Найдите угол между касательными к графику функции $y = x^2 \sqrt{3}/24$, проходящими через точку $M\left(4;-2\sqrt{3}\right)$. (12 баллов)
- 9. Определите все значения a, при которых уравнение $x+|x|=2\sqrt{3+2ax-4a}$ имеет два различных корня. Укажите эти корни при каждом из найденных значений a. (12 баллов)
- 10. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ диагональ CA_1 , равная d, наклонена к плоскости основания под углом 60° и образует угол 45° с плоскостью, проходящей через диагональ AC_1 и середину бокового ребра BB_1 . Найдите площадь основания параллелепипеда. (12 баллов)

Олимпиады школьников «Шаг в будущее» по образовательному предмету «Математика», осень 2015 г.

Вариант № 5

- 1. Двумя насосами, работающими совместно, цистерна заполняется топливом за два часа. Если 80% объёма цистерны заполнить одним насосом, а затем оставшуюся часть—другим, то вся работа займёт 3 ч 36 мин. За сколько часов можно заполнить цистерну каждым из насосов в отдельности? (8 баллов)
- 2. В арифметической прогрессии 12 членов, их сумма равна 354. Сумма членов с четными номерами относится к сумме членов с нечетными номерами, как 32:27. Определите первый член и разность прогрессии. (8 баллов)
 - 3. Решите уравнение $9^{1+2\sqrt{x}} 28 \cdot 9^{\sqrt{x}} + 3 = 0$. (8 баллов)
 - 4. Решите систему уравнений $\begin{cases} 2\sin^2 x + 2\sqrt{2}\sin x \sin^2 2x + \sin^2 2x = 0, \\ \cos x = \cos y. \end{cases}$ (8 баллов)
 - 5. Решите неравенство $x + 6 \sqrt{(x+6)|x+5| + |x+4|} \ge 0.$ (10 баллов)
 - 6. Найдите множество значений функции

$$f(x) = 2\sin((\pi/4)\sin(\sqrt{x-2} + x + 2) - (5\pi/2)).$$
 (10 баллов)

- 7. В треугольнике ABC углы A и B равны 45° и 30° соответственно, CM медиана. Окружности, вписанные в треугольники ACM и BCM касаются отрезка CM в точках D и E. Найдите радиус окружности, описанной около треугольника ABC, если длина отрезка DE равна $4(\sqrt{2}-1)$.
- 8. Найдите угол между касательными к графику функции $y=x^2\sqrt{3}/6$, проходящими через точку $M\left(1;-\sqrt{3}/2\right)$. (12 баллов)
- 9. Определите все значения a, при которых уравнение $x^2 + x|x| = 2(3 + ax 2a))$ имеет два различных корня. Укажите эти корни при каждом из найденных значений a. (12 баллов)
- 10. Найдите площадь сечения прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ плоскостью, которая проходит через диагональ AC_1 , параллельна диагонали основания BD, наклонена к плоскости основания под углом 30° и образует с диагональю A_1C угол 45°, если диагональ параллелепипеда равна d. (12 баллов)

Олимпиады школьников «Шаг в будущее» по образовательному предмету «Математика», осень 2015 г.

Вариант № 9

- 1. Один автомобиль преодолевает расстояние 120 км на 18 мин быстрее, чем другой. Если бы первый автомобиль уменьшил свою скорость на 12 км/ч, а второй увеличил бы свою скорость на 10%, то они затратили бы на тот же путь одинаковое время. Найдите скорости автомобилей. (8 баллов)
- 2. Укажите все значения n, при которых сумма n последовательных членов арифметической прогрессии 25, 22, 19, ..., начиная с первого, не меньше 66. (8 баллов)
 - 3. Решите уравнение $2^{1-2|x|} + 2 \cdot 4^{1+|x|} = 17$. (8 баллов)
 - 4. Решите систему уравнений $\begin{cases} 2\cos^2 x 2\sqrt{2}\cos x \cos^2 8x + \cos^2 8x = 0, \\ \sin x = \cos y. \end{cases}$

(8 баллов)

- 5. Решите неравенство $\frac{x+3-3\sqrt{x+1}}{x^2-4x} > 0$. (10 баллов)
- 6. Найдите множество значений функции

$$f(x) = 2\cos\left(\frac{\pi}{4}\sin(x^2 + 2x + 2 + \cos x)\right).$$
 (10 баллов)

- 7. На стороне BC треугольника ABC отмечена точка K. Известно, что $\angle B + \angle C = \angle AKB$, AK = 5, BK = 6, KC = 2. Найдите площадь круга, вписанного в треугольник ABC.
- 8. Составьте уравнения касательных, проведенных из точки M(0;-2) к параболе $8y = (x-3)^2$. Определите угол между касательными. Найдите площадь треугольника ABM, где A и B точки касания. (12 баллов)
- 9. Укажите все значения a, при которых система уравнений $(x-a)^2 = 8(2y-x+a-2), \ \frac{1-\sqrt{y}}{1-\sqrt{x/2}} = 1$ имеет хотя бы одно решение, и

решите ее при каждом a. (12 баллов)

10. Основанием пирамиды TABCD служит прямоугольник ABCD. Высота пирамиды совпадает с боковым ребром TA, а боковое ребро TC наклонено к плоскости основания под углом 30°. Плоскость, проходящая через ребро TC и параллельная диагонали основания BD, образует с плоскостью основания угол 45°, а расстояние между этой плоскостью и диагональю BD равно a. Какую наименьшую площадь может иметь сечение пирамиды плоскостью, проходящей через диагональ основания AC? (12 баллов)

Олимпиады школьников «Шаг в будущее» по образовательному предмету «Математика», осень 2015 г.

Вариант №10

- 1. Один турист преодолевает расстояние 20 км на 2,5 ч быстрее, чем другой. Если бы первый турист уменьшил свою скорость на 2 км/ч, а второй увеличил бы свою скорость на 50%, то они затратили бы на тот же путь одинаковое время. Найдите скорости туристов. (8 баллов)
- 2. Укажите все значения n, при которых сумма n последовательных членов арифметической прогрессии 22, 19, 16, ..., начиная с первого, не меньше 52. (8 баллов)
 - 3. Решите уравнение $3^{1-2|x|} + 3 \cdot 9^{1+|x|} = 82$. (8 баллов)
 - 4. Решите систему уравнений $\begin{cases} 4\cos^2 x 4\cos x \cos^2 6x + \cos^2 6x = 0, \\ \sin x = \cos y. \end{cases}$

(8 баллов)

- 5. Решите неравенство $\frac{x+21-7\sqrt{x+9}}{x^2-8x} > 0$. (10 баллов)
- 6. Найдите множество значений функции

$$f(x) = 4\cos\left(\frac{\pi}{3}\sin(x^2 + 6x + 10 - \sin x)\right).$$
 (10 баллов)

- 7. На стороне BC треугольника ABC отмечена точка K. Известно, что $\angle B + \angle C = \angle AKB$, AK = 4, BK = 9, KC = 3. Найдите площадь круга, вписанного в треугольник ABC.
- 8. Составьте уравнения касательных, проведенных из точки M(3;0) к параболе $8y = x^2 + 16$. Определите угол между касательными. Найдите площадь треугольника ABM, где A и B точки касания. (12 баллов)
- 9. Укажите все значения a, при которых система уравнений $(x-a)^2=4(y-x+a-1), \ \frac{\sqrt{y}-1}{\sqrt{x}-1}=1$ имеет хотя бы одно решение, и ре-

шите ее при каждом a. (12 баллов)

10. Основанием пирамиды TABCD служит прямоугольник ABCD. Высота пирамиды совпадает с боковым ребром TA, а боковое ребро TC наклонено к плоскости основания под углом 45° . Плоскость, проходящая через ребро TC и параллельная диагонали основания BD, образует с плоскостью основания угол 60° , а расстояние между этой плоскостью и диагональю BD равно a. Какую наименьшую площадь может иметь сечение пирамиды плоскостью, проходящей через диагональ основания AC? (12 баллов)